[发明专利]一种语义理解模型的语义处理方法、装置及存储介质在审

专利信息
申请号: 201911047112.1 申请日: 2019-10-30
公开(公告)号: CN110807333A 公开(公告)日: 2020-02-18
发明(设计)人: 袁刚;赵学敏 申请(专利权)人: 腾讯科技(深圳)有限公司
主分类号: G06F40/30 分类号: G06F40/30;G06F16/35;G06F16/332;G10L15/22
代理公司: 北京派特恩知识产权代理有限公司 11270 代理人: 刘晖铭;张颖玲
地址: 518000 广东省深圳*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 语义 理解 模型 处理 方法 装置 存储 介质
【权利要求书】:

1.一种语义理解模型的语义处理方法,其特征在于,所述方法包括:

获取语音指令信息和车载环境的噪音信息;

响应于所述语音指令信息,根据所述车载环境的噪音信息将所述语音指令转换为相应的可识别文本信息;

通过与所述车载环境相匹配的语义理解模型的语义表示层网络,确定与可识别文本信息所对应的至少一个词语级的隐变量;

通过所述语义理解模型的领域无关检测器网络,根据所述至少一个词语级的隐变量,确定与所述词语级的隐变量相匹配的对象;

通过所述语义理解模型的领域分类网络;根据所述至少一个词语级的隐变量,确定与所述词语级的隐变量相对应的任务领域;

根据与所述词语级的隐变量相匹配的对象,和与所述词语级的隐变量相对应的任务领域,触发相应的业务进程,以实现完成与所述语音指令信息相对应的任务。

2.根据权利要求1所述的方法,其特征在于,所述方法还包括:

获取第一训练样本集合,其中所述第一训练样本集合为通过主动学习进程所获取的与车载环境相对应的带有噪声的语句样本;

对所述第一训练样本集合进行去噪处理,以形成相应的第二训练样本集合;

通过语义理解模型对所述第二训练样本集合进行处理,以确定所述语义理解模型的初始参数;

响应于所述语义理解模型的初始参数,通过所述语义理解模型对所述第二训练样本集合进行处理,确定所述语义理解模型的更新参数;

根据所述语义理解模型的更新参数,通过所述第二训练样本集合对所述语义理解模型的语义表示层网络参数和任务相关输出层网络参数进行迭代更新。

3.根据权利要求2所述的方法,其特征在于,所述对所述第一训练样本集合进行去噪处理,以形成相应的第二训练样本集合,包括:

确定与所述语义理解模型的使用环境相匹配的动态噪声阈值;

根据所述动态噪声阈值对所述第一训练样本集合进行去噪处理,以形成与所述动态噪声阈值相匹配的第二训练样本集合。

4.根据权利要求2所述的方法,其特征在于,所述对所述第一训练样本集合进行去噪处理,以形成相应的第二训练样本集合,包括:

确定与所述语义理解模型相对应的固定噪声阈值;

根据所述固定噪声阈值对所述第一训练样本集合进行去噪处理,以形成与所述固定噪声阈值相匹配的第二训练样本集合。

5.根据权利要求2所述的方法,其特征在于,所述响应于所述语义理解模型的初始参数,通过所述语义理解模型对所述第二训练样本集合进行处理,确定所述语义理解模型的更新参数,包括:

将所述第二训练样本集合中不同语句样本,代入由所述语义理解模型的领域无关检测器网络和领域分类网络所组成的任务相关输出层网络所对应的损失函数;

确定所述损失函数满足相应的收敛条件时对应所述语义理解模型中领域无关检测器网络参数和领域分类网络参数作为所述语义理解模型的更新参数。

6.根据权利要求5所述的方法,其特征在于,所述根据所述语义理解模型的更新参数,通过所述第二训练样本集合对所述语义理解模型的语义表示层网络参数和任务相关输出层网络参数进行迭代更新,包括:

通过所述语义理解模型的更新参数,确定与所述第二训练样本集合相匹配的第二噪声参数,所述第二噪声参数用于表征所述第二训练样本集合中平行语句样本的噪声值;

当所述第二噪声参数到达相应的噪声值阈值时,

根据所述第二噪声参数的噪声值,对所述语义理解模型的语义表示层网络参数和任务相关输出层网络参数进行迭代更新,直至所述语义理解模型的领域无关检测器网络和所述领域分类网络构成的任务相关输出层网络对应的损失函数满足对应的收敛条件。

7.根据权利要求5所述的方法,其特征在于,所述方法还包括:

响应于所述语义理解模型的领域无关检测器网络和领域分类网络所组成的任务相关输出层网络所对应的损失函数,

对所述语义理解模型的语义表示层网络进行参数调整,以实现所述语义表示层网络的参数与所述任务相关输出层网络所对应的损失函数相适配。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于腾讯科技(深圳)有限公司,未经腾讯科技(深圳)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201911047112.1/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top