[发明专利]一种基于面试中微表情的说谎检测方法在审
申请号: | 201911047515.6 | 申请日: | 2019-10-30 |
公开(公告)号: | CN110889332A | 公开(公告)日: | 2020-03-17 |
发明(设计)人: | 胡庆浩;吴其蔓 | 申请(专利权)人: | 中国科学院自动化研究所南京人工智能芯片创新研究院;中国科学院自动化研究所 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04;G06N3/08;G06Q10/10 |
代理公司: | 南京泰普专利代理事务所(普通合伙) 32360 | 代理人: | 窦贤宇 |
地址: | 211000 江苏省南*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 面试 表情 说谎 检测 方法 | ||
1.一种基于面试中微表情的说谎检测方法,其特征是包括以下步骤:
步骤1、制作数据标签:模型以皱眉、抬眉毛、抿嘴、嘟嘴、歪头五种表情进行训练,对每一类表情数据打上标签;
步骤2、特征提取:输入脸部微表情的图像到预训练好的以VGG16作为骨干的SSD网络中,让图片经过卷积神经网络提取特征,并生成特征图;
步骤3、评估边界:对每个特征图都执行卷积操作来评估默认边界框,对每个边界框预测偏移量和分类概率;
步骤4、重生边界:将不同特征图获得的边界框结合起来,执行非极大值抑制的方法过滤一部分重叠或者不正确的边框,生成最终的边界框集合,即检测结果;
步骤5、结果分类:对检测结果用分类器分类。
2.根据权利要求1所述的一种基于面试中微表情的说谎检测方法,其特征在于,所述步骤1进一步为:
步骤1-1、模型提取皱眉、抬眉毛、抿嘴、嘟嘴、歪头五种人脸图像的特征向量,对人脸图像中每个ground truth,找到与其IOU最大的先验框,该先验框与其匹配,对于剩余的未匹配先验框,若某个ground truth的大于阈值0.5,则该先验框也与这个ground truth进行匹配;
步骤1-2、将人脸图像裁剪为尺寸256×256像素,对像素内的人脸图像进行肤色识别,将单位像素的RGB色彩空间转换为YCrCb色彩空间,将32×32像素的区域定义为一个Block,为每个Block分别建立肤色特征向量;对该图像进行梯度运算,对于连续的图像函数f(x,y),其在任意像素点(x,y)处的梯度值为矢量:
式中,Gx表示图像沿x方向的梯度,Gy表示图像沿y方向的梯度,梯度幅值是f(x,y)在其最大变化率方向上的单位距离增加的量;
梯度幅值用表示,表达式如下:
式中,f(x+1,y)表示y方向不变,x方向累加一个像素点的图像函数,f(x,y+1)表示x方向不变,y方向累加一个像素点的图像函数,其它含义同上;
方向角用表示,表达式如下:
式中,各符号含义同上;
步骤1-3、根据提取出的模型特征作为训练样本,计算输入量与输出量之间关联性的估计函数,训练系统对于不同输出量的预测能力,在函数{f(x,ω)}中求得最优函数f(x,ω0)对变量y与x的关联性估计,并使得期望风险R(ω)为最小值:
式中,f(x,ω)表示预测函数,{f(x,ω)}表示预测函数的集合,ω表示广义参数,L(y,f(x,ω))表示使用函数f(x,ω)对输出量y进行预测与实际输出相比所造成的损失,h表示所预测的函数集的最大训练能力,n为训练样本,η∈[0,1]。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院自动化研究所南京人工智能芯片创新研究院;中国科学院自动化研究所,未经中国科学院自动化研究所南京人工智能芯片创新研究院;中国科学院自动化研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201911047515.6/1.html,转载请声明来源钻瓜专利网。