[发明专利]一种基于多信息融合的变流器的故障预警方法及装置在审

专利信息
申请号: 201911095876.8 申请日: 2019-11-11
公开(公告)号: CN112782614A 公开(公告)日: 2021-05-11
发明(设计)人: 徐绍龙;刘永江;贺冠强;李华;陈俊;王亮;臧晓斌;万伟伟;彭宣霖;李榆银;吴书舟;曾祥浩 申请(专利权)人: 株洲中车时代电气股份有限公司
主分类号: G01R31/56 分类号: G01R31/56
代理公司: 上海专利商标事务所有限公司 31100 代理人: 徐伟
地址: 412001 湖*** 国省代码: 湖南;43
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 信息 融合 变流器 故障 预警 方法 装置
【权利要求书】:

1.一种基于多信息融合的变流器的故障预警方法,包括:

建立所述变流器的性能参数数据库,所述性能参数数据库中包括所述变流器在至少一种故障发生时采集的所述变流器的多个功能部件的性能参数集;

对所述性能参数数据库中的性能参数集执行特征提取以获得故障特征参数数据库,所述故障特征参数数据库包括所述至少一种故障以及与每一故障对应的至少一个故障特征参数组,每个故障特征参数组包括关于所述变流器的所述多个功能部件的多个故障特征参数;以及

基于所述故障特征参数数据库中的所述至少一种故障及与每一故障对应的至少一个故障特征参数组执行神经网络建模以获得表现故障与故障特征参数之间的映射关系的故障预警模型。

2.如权利要求1所述的故障预警方法,其特征在于,还包括:

基于对应每种故障的故障程度的故障特征阈值对所述故障特征参数数据库中的故障特征参数进行标定以确定每一故障特征参数组所对应的故障的故障程度,

所述基于所述故障特征参数数据库中的所述至少一种故障及与每一故障对应的至少一个故障特征参数组执行神经网络建模包括:基于所述故障特征参数数据库中的所述至少一种故障的故障状态及与每一故障状态对应的至少一个故障特征参数组执行神经网络建模,所述故障状态包括故障类型和对应每种故障类型的故障程度。

3.如权利要求2所述的故障预警方法,其特征在于,所述执行神经网络建模包括使用BP神经网络模型执行建模,所述BP神经网络模型包括输入层、隐含层和输出层,所述输入层包括关于所述故障特征参数组中的多个故障特征参数所对应的多个故障特征的输入节点,所述输出层包括所述至少一种故障状态的输出节点。

4.如权利要求3所述的故障预警方法,其特征在于,所述隐含层中每个隐含节点的输出为xi为所述输入层的输入节点的输入,wji和θj分别为每个隐含节点和每个输入节点之间的连接权值和阈值,i为所述输入节点的索引,j为所述隐含节点的索引,

所述输出层中每个输出节点的输出为wkj和θk分别为每个输出节点和每个隐含节点之间的连接权值和阀值,k为所述输出节点的索引。

5.如权利要求4所述的故障预警方法,其特征在于,所述BP神经网络的激活函数为Sigmoid函数。

6.如权利要求4所述的故障预警方法,其特征在于,所述输出层的输出节点的输出值Ok与期望输出值tk之间的误差为反向传递中的权值修正函数为阀值修正函数为其中η取0.01~0.8之间。

7.如权利要求6所述的故障预警方法,其特征在于,所述期望输出值包括指示故障状态的故障编号。

8.如权利要求1所述的故障预警方法,其特征在于,所述故障的类型包括以下一者或多者:轴承内圈故障、轴承外圈故障、轴承滚珠故障、轴承保持架故障、风机动平衡破坏故障、风机缺相故障、风机匝间短路故障、风机相不平衡故障、风机接地故障、风机喘振故障、电容超温故障、电容容值损失故障、IGBT超温故障、IGBT过流故障、滤网堵塞故障、水泵故障、热交换器故障、水冷板故障、变压器超温故障、变压器绝缘破坏故障。

9.如权利要求1所述的故障预警方法,其特征在于,所述故障特征参数对应的故障特征包括以下一者或多者:关于风机振动的总值特征、频谱特征、和包络特征、关于风机电流的功率因素、不平衡系数、负序电流、零序电流、频谱特征、包络特征、和能量特征、关于变压器温度的温度有效值和温度变化梯度、关于模块电流的电流有效值和电流时域特征、关于变流器中间电压的谐波特征、关于IGBT温度的温度有效值和温度变化梯度、关于电容电流的总值特征和频谱特征、关于变流器进出口水温的温度有效值和温度变化梯度、关于变流器进出口水压的水压有效值、关于滤网进出口空气温度的温度有效值。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于株洲中车时代电气股份有限公司,未经株洲中车时代电气股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201911095876.8/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top