[发明专利]基于深度学习的肿瘤光声图像快速重建方法及装置有效

专利信息
申请号: 201911096094.6 申请日: 2019-11-11
公开(公告)号: CN110880196B 公开(公告)日: 2023-06-09
发明(设计)人: 孙明健;刘子超;杨西斌;刘广兴;马立勇;刘旸;马一鸣;刘志强 申请(专利权)人: 哈尔滨工业大学(威海)
主分类号: G06T11/00 分类号: G06T11/00;G06N3/08;G06N3/0464
代理公司: 哈尔滨龙科专利代理有限公司 23206 代理人: 王恒
地址: 264209*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 深度 学习 肿瘤 图像 快速 重建 方法 装置
【说明书】:

发明实施例提供基于深度学习的肿瘤光声图像快速重建方法及装置,方法包括:通过k‑Wave工具箱和迭代重建算法,获取稀疏采样下,不同数量、形状、大小、位置、光吸收系数及信噪比的肿瘤光声仿真数据集,通过光声实验补充实验数据集;构建端到端的SEU‑Net;采用预训练策略及有监督的学习方法在肿瘤光声仿真数据集和实验数据集上递进式训练SEU‑Net,依次实现迭代重建算法重建图像到高质量标签图像、初始光声信号图到高质量标签图像的重建任务,得到训练好的肿瘤光声图像重建模型;将目标肿瘤的初始光声信号图输入肿瘤光声图像重建模型,输出重建后的高质量肿瘤光声图像。可实现基于稀疏采样的快速、高质量的肿瘤光声图像重建。

技术领域

本发明涉及计算机技术领域,尤其涉及一种基于深度学习的肿瘤光声图像快速重建方法及装置。

背景技术

光声成像作为一种新兴的医学影像技术,有机地结合了光学成像和声学成像的特点,可以提供深层组织的高分辨率和高对比度的组织断层图像。

光声成像融合了超声成像高空间分辨率,光学成像高对比度、光谱特异性等优点,突破了光学散射造成的成像深度“软极限”,具有非入侵、高分辨、高对比、深穿透、多模态等成像特点,能够获得肿瘤结构和功能的全面信息。

但是,光声信号全采样因数据量过大会带来采集装置、信号传输、图像重建时间等成本的剧增,因此实际中的光声信号采集模式均为稀疏采样。采样数据的稀疏性以及噪音的干扰,使得对信号质量要求较高的传统迭代重建算法,极易产生含有欠采样伪影的低质量重建图像,丢失结构生理等细节信息,影响后续的图像分析;而且缓慢的成像速度,严重制约了实时成像的实现。

发明内容

针对现有技术存在的问题,本发明实施例提供一种基于深度学习的肿瘤光声图像快速重建方法及装置。

本发明实施例提供一种基于深度学习的肿瘤光声图像快速重建方法,包括:

通过k-Wave工具箱和迭代重建算法,获取稀疏采样下,不同数量、形状、大小、位置、光吸收系数及信噪比的肿瘤光声仿真数据集,并通过光声实验补充实验数据集;

构建端到端的卷积神经网络模型SEU-Net;

采用预训练策略及有监督的学习方法,在所述肿瘤光声仿真数据集和所述实验数据集上递进式地训练所构建的SEU-Net,依次实现迭代重建算法重建图像到高质量标签图像、初始光声信号图到高质量标签图像的重建任务,得到训练好的肿瘤光声图像重建模型;

将目标肿瘤的初始光声信号图输入训练好的肿瘤光声图像重建模型,输出重建后的目标肿瘤的高质量图像,作为重建后的高质量肿瘤光声图像。

可选地,所述获取稀疏采样下,不同数量、形状、大小、位置、光吸收系数及信噪比的肿瘤光声仿真数据集,包括:

以预设图像分辨率,依据光声成像原理,在k-Wave中模拟环阵、阵列式探头稀疏采样过程;

在所述环阵、阵列式探头的扫描区域内,随机生成预设数量个肿瘤仿体,随机设定所述肿瘤仿体的形状、大小、位置、光吸收系数及信噪比,每随机生成一组肿瘤仿体,通过k-Wave保存当前肿瘤仿体的初始光声信号图、对应的经迭代重建算法重建后的含有严重欠采样伪影的低质量光声图像、对应的高质量标签图像,作为当前肿瘤仿体的数据;

将随机生成的所有肿瘤仿体的数据组成肿瘤光声仿真数据集,将所述肿瘤光声仿真数据集中的数据按预设比例分为训练集和测试集。

可选地,所述通过光声实验补充实验数据集,包括:

获取以琼脂仿体及种有肿瘤的小鼠作为实验对象进行阵列探头实验、所保存的初始光声信号图和经迭代重建算法重建后的低质量光声图像,以及获取以所述琼脂仿体及种有肿瘤的小鼠作为实验对象进行环阵探头实验、所保存的经迭代重建算法重建后的图像,作为高质量标签图像;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学(威海),未经哈尔滨工业大学(威海)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201911096094.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top