[发明专利]一种基于ECG信号的房颤监测方法在审
申请号: | 201911136421.6 | 申请日: | 2019-11-19 |
公开(公告)号: | CN110811608A | 公开(公告)日: | 2020-02-21 |
发明(设计)人: | 代超;何帆;周振 | 申请(专利权)人: | 中电健康云科技有限公司 |
主分类号: | A61B5/046 | 分类号: | A61B5/046;A61B5/00;A61B5/0456 |
代理公司: | 成都弘毅天承知识产权代理有限公司 51230 | 代理人: | 许志辉 |
地址: | 610000 四川省成都*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 ecg 信号 房颤 监测 方法 | ||
本发明公开了一种基于ECG信号的房颤监测方法,涉及心电图分析技术领域,本发明包括将心电图12导联ECG原始信号描绘在同一张画布上,保存为ECG信号图片;标记ECG信号图片中的波形以及R波高峰,利用深度卷积神经网络对预设识别模型进行训练,得到R波识别模型;根据R波位置找到R波高峰,根据R波高峰位置得到位置序列向量V,进而得到R‑R间期的差值向量V1;根据差值向量V1进行标记,若判定为房颤则记为1,否则记为0,进而得到判定结果集合;利用分类器对结果集合进行分类训练,得到房颤识别模型;利用R波识别模型和房颤识别模型对新的心电图12导联ECG原始信号进行识别,进而监测出该段心电图是否有房颤,本发明具有能快速判断是否有房颤的优点。
技术领域
本发明涉及心电图分析技术领域,更具体的是涉及一种基于ECG信号的房颤监测方法。
背景技术
ECG信号为心电图仪采集到的心电信号,通常称之为心电图,心电图中的每一个心动循环周期由一系列有规律的波形组成,它们分别是P波、QRS复合波和T波,而这些波形的起点、终点、波峰、波谷以及期间分别记录着心脏活动状态的详细信息,为心脏疾病的诊断提供着重要的分析依据。正常的人在正常情况下,心动周期为0.80s左右,即ECG信号的周期为0.80s左右。
P波由心房的激动所产生,后一半主要由左心房产生,正常的P波历时0.08s到0.11s,其波形小而圆;QRS复合波反映左右心室去极化过程的电位变化,QRS波群是心电图中变化最为激烈的波段,由三个紧密相连的波组成,第一个为波形向下的Q波,接着是波形向上的高而尖的R波,最后一个是向下的S波,QRS波群一般历时0.06s到0.10s,其波形的幅度变化比较大;T波代表心室复极化过程的电位变化,是继S波后的一个振幅较低的波,波形呈现扁平形状,在R波为主的心电图上,T波不应太低;U波位于T波之后,代表心室后继电位,同T波方向一致,幅度较T波低,有时波形不明显。
目前通常是通过ECG一维信号:时间和幅值,作为识别系统的输入,让模型对序列信号进行识别,但由于在任何时候,PQRS波的形态变异相对较小,现有的模型很难对序列信号进行识别,并且目前大多是采用单导联或者少数导联进行识别,对信息的利用率较低。
发明内容
本发明的目的在于:为了解决由于PQRS波的形态变异相对较小,目前识别系统的模型对ECG一维信号的识别存在困难的问题,本发明提供一种基于ECG信号的房颤监测方法。
本发明为了实现上述目的具体采用以下技术方案:
一种基于ECG信号的房颤监测方法,包括:
S1、训练得到R波识别模型:
S1.1:获取心电图12导联ECG原始信号,对其进行预处理后全部描绘在同一张画布上,然后将画布保存为ECG信号图片;
S1.2:标记ECG信号图片中的每一个波形以及R波高峰,将ECG信号图片输入预设识别模型,利用深度卷积神经网络对预设识别模型进行训练,得到输出为R波位置的R波识别模型;
S2、训练得到房颤识别模型:
S2.1:根据R波位置找到R波高峰,根据R波高峰位置得到位置序列向量V,对位置序列向量V进行计算得到R-R间期的差值向量V1;
S2.2:根据差值向量V1进行标记,若判定为房颤则记为1,否则记为0,进而得到判定结果集合;
S2.3:利用分类器对结果集合进行分类训练,得到用以判断房颤的房颤识别模型;
S3、判断识别:
利用R波识别模型和房颤识别模型对新的心电图12导联ECG原始信号进行识别,进而监测出该段心电图是否有房颤。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中电健康云科技有限公司,未经中电健康云科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201911136421.6/2.html,转载请声明来源钻瓜专利网。