[发明专利]一种超分辨率图像的重构方法、重构系统和电子设备在审
申请号: | 201911169190.9 | 申请日: | 2019-11-26 |
公开(公告)号: | CN110942425A | 公开(公告)日: | 2020-03-31 |
发明(设计)人: | 左羽;王永金;吴恋;崔忠伟;赵晨洁;于国龙;桑海伟;赵建川;王晴晴;郭龙 | 申请(专利权)人: | 贵州师范学院 |
主分类号: | G06T3/40 | 分类号: | G06T3/40 |
代理公司: | 北京中济纬天专利代理有限公司 11429 | 代理人: | 郝志亮 |
地址: | 550018 贵州省贵*** | 国省代码: | 贵州;52 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 分辨率 图像 方法 系统 电子设备 | ||
本发明提供了一种超分辨率图像的重构方法和重构系统,该超分辨率图像的重构方法和重构系统通过将传统的像素插值图像重构方式与深度卷积神经网络模型学习训练图像重构方式两者进行有机结合,其首先根据像素插值图像重构方式分别对训练图像和测试图像进行预插值重构处理以初步提高该训练图像和该测试图像的分辨率,再根据处理后的该训练图像对深度卷积神经网络模型进行优化学习训练处理,最后基于优化学习训练处理后的该深度卷积神经网络模型对该测试图像进行相应的图像重构处理,从而输出相应的超分辨率图像,其能够有效地减少深度卷积神经网络模型的运算量,以及降低图像重构的成本和提高图像重构的速度。
技术领域
本发明涉及图像重建的技术领域,特别涉及一种超分辨率图像的重构方法、重构系统和电子设备。
背景技术
超分辨率图像重构技术是指将一幅低分辨率图像或者图像序列进行重构处理以获得与之对应的超分辨率图像。其中,由于图像中的高频分量信息与图像中的细节相关,故超分辨率图像重构的关键在于将图像中的高频分量信息重构出来。现有的超分辨率图像的重构方法主要包括基于插值的方法、基于像素重构的方法和基于模型学习的方法;其中,基于双三次插值算法的超分辨率图像重构具有算法处理速度快和对平滑区域处理效果好的特点,但是其在处理边缘和纹理区域的过程中很容易引入模糊和噪声,从而造成图像重建质量的下降;而基于深度卷积神经网络模型的学习方法,则需要利用大量的高分辨率图像及其对应的低分辨率图像组成相应的训练样本对模型进行训练,虽然该方法能够获得较好的重构效果,但是其通常需要占用大量的运算内存和耗费较长的运算时间。可见,现有的关于超分辨率图像的重构技术普遍存在使用图像区域范围小、容易引入模糊与噪声、占用大量运算内存和耗时较长的缺点,其不能提供一种同时具有重构噪声小、重构成本较低和重构速度快的超分辨率图像重构方法。
发明内容
针对现有技术存在的缺陷,本发明提供一种超分辨率图像的重构方法和重构系统,该超分辨率图像的重构方法和重构系统通过将传统的像素插值图像重构方式与深度卷积神经网络模型学习训练图像重构方式两者进行有机结合,其首先根据像素插值图像重构方式分别对训练图像和测试图像进行预插值重构处理以初步提高该训练图像和该测试图像的分辨率,再根据处理后的该训练图像对深度卷积神经网络模型进行优化学习训练处理,最后基于优化学习训练处理后的该深度卷积神经网络模型对该测试图像进行相应的图像重构处理,从而输出相应的超分辨率图像;可见,该超分辨率图像的重构方法和重构系统同时利用了传统的像素插值图像重构方式与深度卷积神经网络模型学习训练图像重构方式各自的在图像重构中的优点,这样能够保证其在对图像的不同区域范围进行相应的图像重构操作的同时不会引用模糊和噪声,并且还能够减少深度卷积神经网络模型的运算量,从而降低该深度卷积神经网络模型的内存占用量和缩短运算时间,以降低图像重构的成本和提高图像重构的速度。
本发明提供一种超分辨率图像的重构方法,其特征在于,所述超分辨率图像的重构方法包括如下步骤:
步骤S1,对图像训练集中的训练图像进行关于颜色空间变换和插值变换的第一图像预处理,以对应地获得预处理图像训练集;
步骤S2,根据所述预处理图像训练集,对深度卷积神经网络模型进行学习训练处理,并根据所述学习训练处理得到的关于所述深度卷积神经网络模型的特征图和/或映射结果,优化所述深度卷积神经网络模型;
步骤S3,对图像测试集中的测试图像进行关于插值变换的第二图像预处理后,将所述测试图像输入至经过优化的所述卷积神经网络中,以输出得到与所述测试图像对应的超分辨率图像;
进一步,在所述步骤S1中,对图像训练集中的训练图像进行关于颜色空间变换和插值变换的第一图像预处理,以对应地获得预处理图像训练集具体包括,
步骤S101,将所述图像训练集中的每一个训练图像转换至YCbCr颜色空间,以对应得到若干YCbCr颜色训练图像;
步骤S102,对每一个YCbCr颜色训练图像进行关于Y分量的降采样处理;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于贵州师范学院,未经贵州师范学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201911169190.9/2.html,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序