[发明专利]一种用于睡眠调节的深度学习声音刺激系统和方法有效

专利信息
申请号: 201911191990.0 申请日: 2019-11-28
公开(公告)号: CN110841169B 公开(公告)日: 2020-09-25
发明(设计)人: 周晖晖;马征;谢津 申请(专利权)人: 中国科学院深圳先进技术研究院
主分类号: A61M21/02 分类号: A61M21/02;A61B5/00;A61B5/04;A61B5/0476;A61B5/0478;A61B5/048
代理公司: 深圳智趣知识产权代理事务所(普通合伙) 44486 代理人: 崔艳峥
地址: 518055 广东省深圳*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 用于 睡眠 调节 深度 学习 声音 刺激 系统 方法
【权利要求书】:

1.一种用于睡眠调节的深度声音刺激系统,所述系统至少包括:深度优化声音库模块,所述深度优化声音库模块由自然声音和合成声音中选择最优的声音刺激构成;脑电波采集模块,所述脑电波采集模块用于采集受试者的脑电信号;睡眠监测模块,所述睡眠监测模块根据所述脑电波采集模块记录到的脑电信号,估计受试者当前所处的睡眠时段;声音刺激选择模块,所述声音刺激选择模块根据所述睡眠监测模块给出的所述当前的睡眠时段,从所述深度优化声音库模块中选择一组指定数量的标记为相同睡眠时段的最优声音刺激;闭环优化模块,所述闭环优化模块根据所述脑电波采集模块采集到的脑电信号中睡眠波的强度调整声音刺激,形成“声音刺激-实时EEG-声音刺激”的闭环,优化声音刺激,以获得针对受试者的最优睡眠调节;播放模块,所述播放模块用于将对应所述受试者的最优睡眠调节声音播放给受试者;

所述深度优化声音库模块包括深度语音识别网络,将相同的音乐旋律输入所述深度语音识别网络,及播放给受试者,同步记录所述深度语音识别网络中模型各层神经元输出的变化与受试者真实EEG信号的变化,确定模型神经元到真实EEG信号的最优映射关系,建立神经网络对EEG活动预测的最优映射模型。

2.如权利要求1所述的深度声音刺激系统,其特征在于,所述闭环优化模块的一种实现方法为:从声音刺激选择模块给出的一组最优声音刺激选择一个进行播放,在播放声音的同时,从睡眠监测模块获得当前睡眠状态对应EEG频段的实时能量相对值,并以此相对值作为当前睡眠时段下睡眠质量的评估值,记录下来;而后,切换到这一组中下一个声音刺激,记录对应的睡眠质量评估值,直到遍历所有的最优声音刺激;最后,从中选择睡眠质量评估值占优的前若干个指定数量的声音刺激,作为对应受试者个性化的最优声音刺激;一旦已经确定受试者个性化的最优声音刺激,跳过声音刺激选择模块与闭环优化模块,而直接从受试者个性化的最优声音刺激中选择对应睡眠时段的声音刺激进行播放,直到检测到的睡眠质量评估值的下降幅度超过原来的30%,重新进行声音刺激选择与闭环优化。

3.如权利要求1所述的深度声音刺激系统,其特征在于,深度语音识别网络使用公开的已训练好的声学模型,或自行建立模型训练得到。

4.如权利要求1所述的深度声音刺激系统,其特征在于,在所述深度优化声音库模块中,使所述深度语音识别网络对EEG活动的最优映射模型形成深度EEG预测网络,将声音刺激输入所述深度EEG预测网络,得到当前声音刺激下对EEG信号的估计,称作EEG估计信号,对所述EEG估计信号中表征睡眠不同时段的梭形波、θ波、高δ波、低δ波所占的频带能量比例进行计算,并依据这些频带能量比例对输入的自然声音由高到低进行排序,选取排序靠前的十分位数以内的声音刺激,作为不同睡眠时段对应的最优声音刺激,标记后存储到深度最优声音库当中。

5.一种声音闭环优化模块实现方法,其包括如下步骤:从声音刺激选择模块给出的一组最优声音刺激选择一个进行播放,在播放声音的同时,从睡眠监测模块获得受试者当前睡眠状态对应EEG频段的实时能量相对值,并以此相对值作为当前睡眠时段下睡眠质量的评估值,记录下来;而后,切换到这一组中下一个声音刺激,记录对应的睡眠质量评估值,直到遍历所有的最优声音刺激;最后,从中选择睡眠质量评估值占优的前若干个指定数量的声音刺激,作为对应受试者个性化的最优声音刺激;一旦已经确定受试者个性化的最优声音刺激,跳过声音刺激选择模块与闭环优化模块,而直接从受试者个性化的最优声音刺激中选择对应睡眠时段的声音刺激进行播放,直到检测到的睡眠质量评估值的下降幅度超过原来的30%,重新进行声音刺激选择与闭环优化。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院深圳先进技术研究院,未经中国科学院深圳先进技术研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201911191990.0/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top