[发明专利]模型错例的分析方法、装置及电子设备有效
申请号: | 201911195171.3 | 申请日: | 2019-11-28 |
公开(公告)号: | CN111046929B | 公开(公告)日: | 2023-09-26 |
发明(设计)人: | 苏驰;李凯;刘弘也 | 申请(专利权)人: | 北京金山云网络技术有限公司;北京金山云科技有限公司 |
主分类号: | G06V10/776 | 分类号: | G06V10/776;G06V10/74;G06V10/762 |
代理公司: | 北京博遵律师事务所 11761 | 代理人: | 马佑平 |
地址: | 100085 北京市*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 模型 分析 方法 装置 电子设备 | ||
本发明涉及模型错例的分析方法、装置及电子设备。该方法包括:获取错例集,错例集包括多个错判图像,多个错判图像均为基于同一模型的错判案例,模型为使用多个第一样本图像通过机器学习训练得出;提取每个错判图像的特征数据;根据特征数据,获取每个错判图像在错例集中的最相似图像,确定任意两个错判图像之间是否存在最相似关系;根据最相似关系对错例集进行聚类,得到聚类结果,聚类结果包括至少一个团簇,每个团簇对应多个错判图像。
技术领域
本发明涉及云服务技术领域,更具体地,涉及一种模型错例的分析方法、一种模型优化方法、一种模型错例的分析装置、一种模型优化装置以及一种电子设备。
背景技术
随着云计算、大数据以及人工智能技术的发展,越来越多的云公司开始对外提供人工智能服务,如图片分类等。同时,随着以深度学习为代表的人工智能技术的快速发展,人工智能算法的识别准确率不断提高,但是算法不可避免会出现预测错误的情况,这些预测错误的样例(错例)会通过终端用户不断反馈给云公司。如何快速且高效地对用户反馈的海量错例进行分析,进而有针对性的对人工智能算法进行调优是一项非常重要且迫切的任务。
现有方式中,通常由人工观察和分析海量错例,在此基础上总结出典型的错误类型。这种方式费时费力,成本较高。
因此,有必要提出一种新的人工智能模型的错例分析方法方案。
发明内容
本发明的一个目的是提供一种新的人工智能模型的错例分析方法方案。
根据本发明的第一方面,提供了一种模型错例的分析方法,包括:
获取错例集,所述错例集包括多个错判图像,所述多个错判图像均为基于同一模型的错判案例,所述模型为使用多个第一样本图像通过机器学习训练得出;
提取每个所述错判图像的特征数据;
根据所述特征数据,获取每个所述错判图像在所述错例集中的最相似图像;
根据所述每个所述错判图像在所述错例集中的最相似图像,确定所述错例集中任意两个错判图像之间是否存在设定的最相似关系;
根据所述最相似关系对所述错例集进行聚类,得到聚类结果,所述聚类结果包括至少一个团簇,每个所述团簇对应多个错判图像。
可选地,所述根据所述每个所述错判图像在所述错例集中的最相似图像,确定所述错例集中任意两个错判图像之间是否存在设定的最相似关系,包括:
根据所述每个所述错判图像在所述错例集中的最相似图像,获取所述错例集对应的关系矩阵;
根据所述关系矩阵,获得所述最相似关系。
可选地,所述根据所述每个所述错判图像在所述错例集中的最相似图像,获取所述错例集对应的关系矩阵,包括:
建立关系矩阵,所述关系矩阵的行数和列数均等于所述错例集中错判图像的总数,所述关系矩阵中每个元素的行坐标和列坐标分别对应一个错判图像;
确定所述关系矩阵中元素的数值,如果所述元素的行坐标和列坐标对应的两个错判图像满足以下至少一种情况,确定所述元素的数值为第一数值:所述两个错判图像的一方为另一方的相似图像,或者所述两个错判图像对应的最相似图像为同一错判图像;否则,确定所述元素的数值为第二数值。
可选地,所述根据所述关系矩阵,获得所述最相似关系,包括:
获取任意两个错判图像对应的所述关系矩阵中的元素;
根据获取的所述元素的数值,确定所述任意两个错判图像之间是否存在最相似关系。
可选地,所述根据所述最相似关系对所述错例集进行聚类,得到聚类结果,包括:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京金山云网络技术有限公司;北京金山云科技有限公司,未经北京金山云网络技术有限公司;北京金山云科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201911195171.3/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种地面燃气轮机轮毂榫槽激光复型工艺方法
- 下一篇:焊接设备