[发明专利]基于ANN的程序检测方法和检测系统及应用有效
申请号: | 201911253427.1 | 申请日: | 2019-12-09 |
公开(公告)号: | CN111026664B | 公开(公告)日: | 2020-12-22 |
发明(设计)人: | 张华琛;张宇萌 | 申请(专利权)人: | 遵义职业技术学院 |
主分类号: | G06F11/36 | 分类号: | G06F11/36;G06N3/04;G06N3/08 |
代理公司: | 重庆强大凯创专利代理事务所(普通合伙) 50217 | 代理人: | 向林 |
地址: | 563000 *** | 国省代码: | 贵州;52 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 ann 程序 检测 方法 系统 应用 | ||
本方案涉及软件测试领域的一种基于ANN的程序测试方法;针对功能可完成,代码能正常运行的目标程序进行测试,包括先通过人工神经网络构建测试模型,然后取目标程序的输入值输入到测试模型中,根据该测试模型的计算得到测试输出值;再然后,输入值输入到目标程序和测试模型中,得到实际输出值和测试输出值;选出两者的偏差量,将选出的输入值传递到目标程序进行运行,运行结果与实际功能需求进行对比,如果运行结果有其一与实际功能需求不符合,则判定目标程序存在缺陷。当目标程序具体代码规格和实现需求均不知晓的情况,采用本检测方法可以很好的得到准确的测试用例,减少了测试过程的资源消耗。
技术领域
本发明属于软件检测技术,具体涉及到软件功能错误检测方法和构建软件检测模型的系统。
背景技术
软件测试是用来促进鉴定软件的正确性、完整性、安全性和质量的过程。换句话说,软件测试是一种实际输出与预期输出之间的审核或者比较过程。
现在的软件测试经过长期人们经验积累和技术的改进,基本上形成了:静态测试方法、动态测试方法、黑盒测试方法和白盒测试方法;四种测试方式针对不同的软件有相应的优势。在实际运用过程中经常是混合测试,对于简单程序也可单独测试。四种测试方式具体的作用和概念为公知技术,在此不再赘述。
其中,黑盒测试是针对软件功能是否达到预期来进行检测,通过数据输入观察数据输出,检查软件内部功能是否正常。为了尽可能判断出软件功能实现是正确的或者存在错误的结果。从理论上讲,黑盒测试只有采用穷举输入测试,把所有可能的输入都作为测试情况考虑,才能查出程序中所有的错误。实际上测试情况有无穷多个,人们不仅要测试所有合法的输入,而且还要对那些不合法但可能的输入进行测试。这样看来,完全测试是不可能的,所以我们要进行有针对性的测试,通过制定测试案例指导测试的实施,保证软件测试有组织、按步骤,以及有计划地进行。黑盒测试行为必须能够加以量化,才能真正保证软件质量,而测试用例就是将测试行为具体量化的方法之一。
测试用例在构建过程中,我们需要了解软件实现的功能是什么,并且需要知道软件的规则,也就是由于功能点较多,需要根据功能来构建测试案例,编写测试用例文档应有文档模板,须符合内部的规范要求。
设计基本事件的用例,应该参照用例规约(或设计规格说明书),根据关联的功能、操作按路径分析法设计测试用例。如何灵活运用各种基该方法来设计完整的测试用例,需要很强的逻辑性和专业性,现在要设计出准确的测试用例,全凭测试设计人员的丰富经验和精心设计。
随着人工神经网络的概念出现,研究人员也将该概念逐渐应用于软件测试领域中,人工神经网络具有“自我学习”的能力,现在用神经网络用于软件检测,用途主要是在形成准确的测试用例上,如作者“吕珊珊”在其硕士论文“基于BP神经网络软件测试缺陷预测技术研究及应用”中提到,采用BP神经网络对软件进行测试,该文中的研究重点是通过对一段算法程序(函数)采用人工神经网络的概率通过对该算法程序的输入和输出值形成“输入输出值集合”,将输入输出值集合作为构建人工神经网络的基础,这样形成的“人工神经网络模型”与被测的“算法程序”具有相同的功能。
该文献的观点虽然很好的证明了通过“人工神经网络”构建的模型在功能上可以等价于提供“输入输出集合”的“算法程序”;但是要用于检测一个功能未知、结构未知、程序复杂程度未知的“算法程序”是否有错误,该文献还没有给出指导方向,用上述方法也无法得到测试用例。
在实际工程应用中,要加快“软件”尽快推入市场”,企业可以将“软件测试”环节外包给专门进行“软件测试”的机构完成,由于知识产权意识逐渐在人们心中受到重视。在外包过程中,其实是不希望将“源代码”和“需求规格”交给软件测试机构的,基于此,可对“源代码”进行加密,检测机构只能进行类似“黑盒检测”方式检测“源代码”的功能是否正确。
被测“源代码”在后面的文章中也称目标程序。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于遵义职业技术学院,未经遵义职业技术学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201911253427.1/2.html,转载请声明来源钻瓜专利网。