[发明专利]一种基于区块链网络的信息处理方法及装置有效
申请号: | 201911296704.7 | 申请日: | 2019-09-17 |
公开(公告)号: | CN110991391B | 公开(公告)日: | 2021-06-29 |
发明(设计)人: | 俄万有 | 申请(专利权)人: | 腾讯科技(深圳)有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00 |
代理公司: | 北京派特恩知识产权代理有限公司 11270 | 代理人: | 崔晓岚;张颖玲 |
地址: | 518000 广东省深圳*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 区块 网络 信息处理 方法 装置 | ||
1.一种基于区块链网络的信息处理方法,其特征在于,所述方法包括:
获取目标视频,并根据所述目标视频的视频参数,提取所述目标视频的图像特征向量和语音特征向量;
通过图像语义识别网络对所述图像特征向量进行语义识别处理,形成与图像特征向量相匹配的图像语义识别结果,其中,所述图像语义识别网络包括基于注意力机制的循环卷积神经网络和基于记忆机制的卷积神经网络;
通过语音语义识别网络对所述语音特征向量进行语义识别处理,形成与语音特征向量相匹配的语音语义识别结果;
对所述图像语义识别结果和所述语音语义识别结果进行语义整合处理,形成与所述目标视频相匹配的文本信息,其中,所述文本信息用于通过自然语言对所述目标视频的内容进行描述;
将所述目标视频及对应的与所述目标视频相匹配的文本信息发送至区块链网络,以使
所述区块链网络的节点将目标视频及对应的与所述目标视频相匹配的文本信息填充至新区块,且当对所述新区块共识一致时,将所述新区块追加至区块链的尾部。
2.根据权利要求1所述的方法,其特征在于,所述方法还包括:
对所述目标视频进行解析,获取所述目标视频的时序信息;
根据所述目标视频的时序信息,对所述目标视频所对应的视频信息进行解析,获取与所述目标视频相对应的播放时长参数与存储位置参数。
3.根据权利要求2所述的方法,其特征在于,所述根据所述目标视频的视频参数,提取所述目标视频的图像特征向量和语音特征向量,包括:
响应于所述目标视频的时序信息,根据与所述目标视频相对应的播放时长参数与存储位置参数,通过图像分类网络对所述目标视频所包括的图像帧进行处理,形成与所述目标视频的时序信息相匹配的图像特征向量;
响应于所述目标视频的时序信息,根据与所述目标视频相对应的播放时长参数与存储位置参数,通过语音分类的卷积神经网络对所述目标视频所包括的音频信息进行处理,形成与所述目标视频的时序信息相匹配的语音特征向量。
4.根据权利要求1所述的方法,其特征在于,所述基于所述图像特征向量和所述语音特征向量,对所述目标视频进行内容识别,得到与所述目标视频相匹配的文本信息,包括:
通过图像语义识别网络对所述图像特征向量进行语义识别处理,形成与图像特征向量相匹配的图像语义识别结果;
通过语音语义识别网络对所述语音特征向量进行语义识别处理,形成与语音特征向量相匹配的语音语义识别结果;
对所述图像语义识别结果和所述语音语义识别结果进行语义整合处理,形成与所述目标视频相匹配的文本信息。
5.根据权利要求4所述的方法,其特征在于,所述通过图像语义识别网络对所述图像特征向量进行语义识别处理,形成与图像特征向量相匹配的图像语义识别结果,包括:
通过基于注意力机制的循环卷积神经网络,对所述图像特征向量进行语义识别处理,形成相应的第一图像语义识别结果;
通过基于记忆机制的卷积神经网络,对所述图像特征向量进行语义识别处理,形成相应的第二图像语义识别结果;
对所述第一图像语义识别结果和所述第二图像语义识别结果进行语义整合处理,形成与图像特征向量相匹配的图像语义识别结果。
6.根据权利要求4所述的方法,其特征在于,所述方法还包括:
提取所述目标视频中的相应视频样本,其中,所述视频样本包括至少两帧视频图像帧;
提取所述视频样本中每一帧视频图像帧的至少两个局部特征;
根据每一帧视频图像帧中各个局部特征所对应的权重参数,对每一帧视频图像帧中的局部特征进行特征整合处理,得到每一帧视频图像帧的局部特征向量;
根据每一帧视频图像帧的局部特征向量、以及所述视频样本中图像的时序信息,对所述视频样本进行内容识别,得到所述目标视频的视频内容信息,所述视频内容信息包括视频内容描述以及所述视频内容描述的词性信息;
根据所述视频内容信息以及所述视频样本的真实视频内容信息,更新所述图像语义识别网络的参数。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于腾讯科技(深圳)有限公司,未经腾讯科技(深圳)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201911296704.7/1.html,转载请声明来源钻瓜专利网。