[发明专利]基于目标检测的人脸篡改鉴定方法、模型及其鉴定方法在审

专利信息
申请号: 201911296877.9 申请日: 2019-12-16
公开(公告)号: CN111104892A 公开(公告)日: 2020-05-05
发明(设计)人: 严国建;李志强;王彬;曾璐;杨阳;许璐;梁瑞凡 申请(专利权)人: 武汉大千信息技术有限公司
主分类号: G06K9/00 分类号: G06K9/00;G06K9/32;G06Q50/26
代理公司: 武汉智盛唯佳知识产权代理事务所(普通合伙) 42236 代理人: 胡红林
地址: 430074 湖北省武*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 目标 检测 篡改 鉴定 方法 模型 及其
【说明书】:

发明涉及基于目标检测的人脸篡改鉴定方法、模型及其鉴定方法,通过利用目标检测模型提取目标图像中人脸的坐标信息,通过目标检测模型的尾分支完成人脸框的检测,在目标检测模型的原有特征提取层后添加一个人脸篡改鉴定分支并通过该分支提取人脸篡改鉴定特征,最后根据所述人脸篡改鉴定特征鉴定人脸是否被篡改。本发明通过大数据学习能够自动提取图像特征,在检测出图像中人脸信息的同时,实现对图像中人脸是否被篡改的鉴定。

技术领域

本发明涉及图像或视频的鉴定,具体地指一种基于目标检测的人脸篡改鉴定方法、模型及其鉴定方法,属于图像处理技术领域。

背景技术

早在2017年,一位名叫“deepfakes”的外国网友就利用AI(人工智能)技术,将女明星的脸,“移花接木”到了色情片女主角身上,一度掀起轩然大波。这一技术被公开后,各种换脸软件层出不穷。“deepfake”也因此成为这项技术的代名词。“deepfake”(深度伪造)是英文“deeplearning”(深度学习)和“fake”(伪造)的合成词,是一种基于AI的人体图像合成技术。利用深度学习算法进行音频、视频的模拟和伪造,创造出现实不存在的人物活动,让某人做没做过的事。这种技术的一大特点就是,投入深度学习的内容库越大,合成的音视频仿真性就越高,甚至可以达到以假乱真的效果。

毋庸置疑,“deepfake”这项技术如果被居心叵测者利用,制作各种可能涉及色情、暴力、政治因素的虚假视频,就会成为侵害他人合法权益和危害社会公共安全的工具。对于人脸篡改鉴定任务,很多人直接使用传统数字图像处理来鉴定,传统方法算法设计的特征只能对特定篡改进行鉴定;在AI技术兴起后,有些人的第一想法是直接使用SSD等通用目标检测算法检测出人脸位置,再训练人脸篡改判定网络对检测到的人脸roi图片进行是否是篡改人脸的判定。这种先检测后判定的方法不仅步骤繁琐,而且每帧图像鉴定所需时耗会随着图片中检测到的人脸增加而线性增加。

发明内容

本发明目的在于克服上述现有技术的不足而提供一种基于目标检测的人脸篡改鉴定方法、模型及其鉴定方法,本发明能够自动学习图像特征,在检测出图像中人脸坐标信息的同时,实现对图像中人脸是否被篡改的鉴定。

实现本发明目的采用的技术方案是一种基于目标检测的人脸篡改鉴定方法,该方法包括:利用目标检测模型提取目标图像中人脸的坐标信息,通过目标检测模型的尾分支完成人脸框的检测,在目标检测模型的原有特征提取层后添加一个人脸篡改鉴定分支并通过该分支提取人脸篡改鉴定特征,最后根据所述人脸篡改鉴定特征鉴定人脸是否被篡改。

本发明还提供一种基于目标检测的人脸篡改鉴定模型,该模型包括人脸篡改鉴定基础模型,所述人脸篡改鉴定基础模型包括:

目标检测模型,用于将提取的人脸特征回归出目标图像中人脸坐标信息;

人脸篡改鉴定分支,设于所述目标检测模型的特征提取层后,所述人脸篡改鉴定分支用于提取目标图像中人脸的描述信息,并以此鉴定人脸是否被篡改。

本发明还提供一种将上述人脸篡改鉴定基础模型进行训练得到人脸篡改鉴定网络模型,具体的训练过程包括:收集m个原视频文件及对原视频文件中进行人脸篡改后的视频文件作为初始样本,并以初始样本采集样本图片n张,对样本图片中人脸坐标及其是否被篡改进行标注;将初始样本和标注结果作为输入,通过多次调整训练参数训练得到人脸篡改鉴定网络模型。

本发明能够自动、快速对图片或实时视频进行人脸是否被篡改的鉴定,有利于协助拦截各种可能涉及色情、暴力、政治因素的虚假视频,帮助打击侵害他人合法权益和危害社会公共安全的犯罪行为。

附图说明

图1为SSD目标检测模型的算法示意图。

图2为本发明基于目标检测的人脸篡改鉴定网络模型的结构示意图。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉大千信息技术有限公司,未经武汉大千信息技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201911296877.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top