[发明专利]一种煤炭中煤矸石和煤的分类识别方法在审
申请号: | 201911326322.4 | 申请日: | 2019-12-20 |
公开(公告)号: | CN111079845A | 公开(公告)日: | 2020-04-28 |
发明(设计)人: | 朱爱斌;屠尧;宋纪元 | 申请(专利权)人: | 西安交通大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06K9/34;G06K9/46;G06N3/04;G06N3/08;G06T7/194 |
代理公司: | 西安智大知识产权代理事务所 61215 | 代理人: | 王晶 |
地址: | 710049 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 煤炭 煤矸石 分类 识别 方法 | ||
1.一种煤炭中煤矸石和煤的分类识别方法,其特征在于,包括以下步骤;
步骤1:采集不同大小和颜色的的煤矸石的图像作为训练样本集1,并做标签为煤矸石,采集不同大小和光泽的煤的图像作为训练样本集2,并做标签为煤;
步骤2:通过分割算法提取训练样本集1中的煤矸石主体部分和训练样本集2中煤主体部分,实现煤矸石主体和煤主体与样本集图像背景分离,防止样本集图像背景对煤矸石和煤的识别与分离造成干扰;
步骤3:利用小波变换对步骤2得到的新的图像样本集进行图像分解并提取各频域子图的特征;
步骤4:将小波变换后的得到的分解图像作为卷积神经网络的输入,通过多次训练对网络权值参数进行优化更新,从而获取准确率最高的神经网络参数,得到最佳煤矸石和煤的识别分类模型。
2.根据权利要求1所述的一种煤炭中煤矸石和煤的分类识别方法,其特征在于,所述的步骤1具体为:
(1)选取20组大小不同的煤矸石和煤的样本,对每一个样本利用720P分辨率的相机进行拍照获取样本集图像,样本集每个图像的大小为1280×720,此外对煤矸石的图像做标签1,对煤的图像做标签2;
(2)利用数字图像处理的方法进行训练集数据增强,对原始样本图像利用翻转、旋转、缩放、插值等手段生成第一子代样本,第一子代样本的标签和父代的样本标签一致;
(3)对第一子代样本图像在图像的HSV颜色空间,改变饱和度S和亮度V分量,保持色调H不变,对每个像素的S和V分量进行指数运算(指数因子在0.25到4之间),增加光照变化,产生第二子代样本,第二子代样本的标签和第一子代的样本标签一致。
3.根据权利要求1所述的一种煤炭中煤矸石和煤的分类识别方法,其特征在于,所述的步骤2具体为:
(1)将样本集图像进行灰度变换,记录图像的高度和宽度分别为H和W;
(2)计算分割算法滑动窗的高度HH和宽度WW,计算公式如下:
(3)设置样本集图像中每一个像素点的灰度值二值化的阈值为以当前像素点为中心,高度为HH宽度为WW的滑动窗中所有像素点灰度值的平均值α,设置参数β,当样本集灰度图像中的某个像素点灰度小于等于α×β时,保留该像素点的灰度值不变,如果某个像素点灰度大于α×β,将该像素点灰度值设为255,参数β为一个小于1大于0的数,可以根据背景分割效果来调整。
4.根据权利要求1所述的一种煤炭中煤矸石和煤的分类识别方法,其特征在于,所述的步骤3具体为:
(1)对第二步得到的分离了背景的样本训练集灰度图像从水平方向进行Haar低通和Haar高通滤波,假设灰度图像的某一行向量为[a1,a2,a3,a4],Haar低通滤波器为[1,1],Haar低通滤波器为[1,-1],则经过Haar低通和Haar高通滤波后图像的行向量变为了
(2)再对训练集灰度图像从竖直方向进行如(1)所示的操作,实现对灰度图像每一列向量进行Haar低通和Haar高通滤波后图像;
(3)对图像在水平方向进行Haar小波变换后可以得到图像中的低频成分L和高频成分H,再对图像在竖直方向进行Haar小波变换后可以得到获得原始图像在水平和垂直方向上的低频分量LL、水平方向上的低频和垂直方向上的高频LH、水平方向上的高频和垂直方向上的低频HL以及水平和垂直方向上的的高频分量HH;
(4)将(3)中的LL、LH、HL、HH分别进行提取即可得到四张新的图像,分别是图像的近似,图像在水平、竖直和对角方向的轮廓细节,新的图像大小都是640×360。
5.根据权利要求1所述的一种煤炭中煤矸石和煤的分类识别方法,其特征在于,所述的步骤4具体为:
(1)根据第三步,将每一个样本图像的四个分解的子图合并最终可以得到一个640×360×4的数据样本,每个数据样本的标签和父代样本的标签一致,首先将样本图像的每个通道的数据都除以255,对数据样本进行归一化;
(2)将归一化后的数据样本输入到卷积层,给定32个5×5×4的卷积核,在原数据样本的周围添加两圈0,使原数据样本变为644×364×4,利用卷积核在输入数据样本上以步长2滑动,和滑动窗口中的数据进行卷积运算,第一层卷积层的激活函数选择ReLU函数,经过卷积运算和激活函数激活后,第一层卷积层的输出为320×180×32的数据;
(3)将步骤(2)得到的输出再输入到第一层池化层,池化层用于在保证信息有效性的基础上,通过减少数据量以提升网络的训练速度,利用2×2的池化滤波器以步长2对输入数据采用最大池化法进行池化,即利用2×2的窗口在输入数据中进行滑动,取窗口中的最大数据作为新的数据并组成新的矩阵,因此第一层池化层输出为160×90×32的数据;
(4)将步骤(3)得到的输出在输入到第二层卷积层,给定64个5×5×32的卷积核,在输入数据的周围添加两圈0,使输入数据变为164×94×32,利用卷积核在输入数据样本上以步长2滑动,和滑动窗口中的数据进行卷积运算,第二层卷积层的激活函数选择ReLU函数,经过卷积运算和激活函数激活后,第二层卷积层的输出为80×45×64的数据;
(5)将步骤(4)得到的输出数据输入到第二层池化层中,池化层设置和第一层池化层相同,因此第二层池化层输出为40×23×64的数据;
(6)第三层的卷积层设置为128个3×3×64,在输入数据的周围添加一圈0,使输入数据变为42×25×64,滑动步长设置为2,第三层的卷积层激活函数选择ReLU函数,则第三层卷积层输出为20×12×128,第三层池化层设置和第一层池化层相同,因此第三层池化层输出为10×6×128;
(7)将经过前面三层卷积、激活与池化后到的维度为10×6×128的特征张量展开为包含7680个元素的一维数组,并作为全连接层的输入,全连接层类似于BP神经网络,全连接层的输出参考为样本图像的标签;
(8)对根据步骤(1)到(7)构建的卷积神经网络进行训练,训练过程如下:a.将网络的权值初始化为小于1的,符合高斯分布的随机数;b.输入样本图像经过卷积层、池化层、全连接层的向前传播得到输出值;c.求出网络的输出值与目标值之间的误差;d.当误差大于设置的期望误差值0.00001时,将误差传回网络中,依次求得全连接层,池化层,卷积层的误差,各层的误差可以理解为对于网络的总误差,网络应承担多少;e.根据求得的误差对网络的权值进行更新;f.然后再进行b步,开始新一次的训练;g.当误差等于或小于设置的期望值时,固定神经网络的权值,结束训练,最终可以得到对煤矸石和煤的图像进行分类的神经网络。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201911326322.4/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种隐藏式微站智慧信息灯杆
- 下一篇:螺杆生产装置