[发明专利]一种用于水下目标识别的小波线谱特征提取方法及系统在审
申请号: | 201911342527.1 | 申请日: | 2019-12-23 |
公开(公告)号: | CN113095113A | 公开(公告)日: | 2021-07-09 |
发明(设计)人: | 徐及;任佳威;颜永红 | 申请(专利权)人: | 中国科学院声学研究所;北京中科信利技术有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06N3/04 |
代理公司: | 北京方安思达知识产权代理有限公司 11472 | 代理人: | 陈琳琳;杨青 |
地址: | 100190 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 用于 水下 目标 识别 线谱 特征 提取 方法 系统 | ||
本发明属于水下目标识别和信号处理技术领域,具体涉及一种基于小波线谱特征提取的水下目标识别方法,该方法包括:对声呐阵列接收的信号进行频谱分析,获得各个频段内的频谱信息;基于获得的每个频段内的频谱信息,提取单个频段内线谱特征的最大值,作为当前频段的特征向量,获得各个频段的特征向量;将各个频段的特征向量进行拼接或平均,获得优化后的特征向量;将当前频段的特征向量和优化后的特征向量一起作为新的特征向量,并将该新的特征向量输入至预先训练的时延神经网络,输出当前频段对应的目标类别信息,作为分类结果。
技术领域
本发明属于水下目标识别和信号处理技术领域,具体涉及一种用于水下目标识别的小波线谱特征提取方法及系统。
背景技术
水下目标信号的特征参数提取是一项备受关注的研究课题,无论在军事还是在民用领域都具有十分重要的理论意义和工程应用价值。过去较长一段时间,人们一直以传统的信号处理理论作为水声信号特征提取的基础,即以平稳性、随机性来刻画水声信号,以时域、频域参数作为特征参数。
目标识别中最为关键的技术是特征提取。特征参数是否有效,在于其中包含的类别信息是否足够多,而干扰信息是否足够少,如果不能采用有效的特征,即便有出色的分类器也无法得到理想的分类识别结果。几十年来,现有的目标识别特征提取方法,主要有以下几种:基于谱分析的特征提取、基于舰船噪声的非线性特征提取、基于小波变换的特征提取法、神经网络特征提取法以及基于人耳听觉特征的特征提取方法。
在水下目标识别任务中,特征提取方法与分类器彼此适应,将深度神经网络作为水下目标识别系统的分类器之后,传统特征提取方法在信噪比较低的情况下,分类结果较差,无法更好表达数据的特征提取。
发明内容
本发明的目的在于,为解决现有的水下目标识别的特征提取方法存在上述缺陷,本发明提出了一种用于水下目标识别的小波线谱特征提取方法,通过改变特征提取方法,提升基于深度学习的水下目标识别在低信噪比条件下的识别效果。
为了实现上述目的,本发明提供了一种用于水下目标识别的小波线谱特征提取方法,该方法包括:
对声呐阵列接收的信号进行频谱分析,获得各个频段内的频谱信息;
基于获得的每个频段内的频谱信息,提取单个频段内线谱特征的最大值,作为当前频段的特征向量,获得各个频段的特征向量;
将各个频段的特征向量进行拼接或平均,获得优化后的特征向量;
将当前频段的特征向量和优化后的特征向量一起作为新的特征向量,并将该新的特征向量输入至预先训练的时延神经网络,输出当前频段对应的目标类别信息,作为分类结果。
作为上述技术方案的改进之一,所述对声呐阵列接收的信号进行频谱分析,获得每个频段内的频谱信息;具体包括:
对声呐阵列接收的信号进行波束形成,获得目标辐射噪声信号;
对获得的目标辐射噪声信号进行预处理;
对预处理后的信号进行分帧,并对每一帧信号进行多尺度的分解,得到各个频段的小波系数;
基于得到的各个频段的小波系数,对目标特征频段的信号进行重构,得到不同频段的小波系数对应的重构信号;
利用快速傅里叶变换对得到的各个频段的小波系数对应的重构信号进行频谱分析,得到各个频段内的频谱信息。
作为上述技术方案的改进之一,所述对预处理后的信号进行分帧,并对每一帧信号进行多尺度的分解,得到各个频段的小波系数;具体为:
利用小波包变换分解算法:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院声学研究所;北京中科信利技术有限公司,未经中国科学院声学研究所;北京中科信利技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201911342527.1/2.html,转载请声明来源钻瓜专利网。