[发明专利]一种基于双半球差异性模型的脑电情感识别方法及装置有效

专利信息
申请号: 201911343069.3 申请日: 2019-12-24
公开(公告)号: CN111126263B 公开(公告)日: 2022-11-25
发明(设计)人: 郑文明;李阳;江星洵;宗源 申请(专利权)人: 东南大学
主分类号: G06K9/00 分类号: G06K9/00;G06N3/04;G06N3/08
代理公司: 南京苏高专利商标事务所(普通合伙) 32204 代理人: 冯艳芬
地址: 211102 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 半球 差异性 模型 情感 识别 方法 装置
【说明书】:

发明公开了一种基于双半球差异性模型的脑电情感识别方法及装置,方法包括:(1)获取一个脑电情感数据库,包括训练集和测试集;(2)建立脑电情感识别网络,所述脑电情感识别网络包括特征提取器、域判别器和情感分类器;(3)对所述脑电情感识别网络进行训练,训练时,将训练集和测试集中每一脑电情感数据作为一个样本,输入特征提取器,提取双半球特征,并将从训练集和测试集提取的每个双半球特征作为一个样本,输入域判别器,将从训练集提取的每个双半球特征作为一个样本,输入情感分类器;(4)提取待识别的脑电情感数据,将其作为一个测试集样本输入训练好的脑电情感识别网络,并按照步骤(3)对脑电情感识别网络调整,得到识别的情感类别。本发明准确率更高。

技术领域

本发明涉及情感识别,尤其涉及一种基于双半球差异性模型的脑电情感识别方法及装置。

背景技术

人类作为世界上情感最为丰富的动物,在进行各种活动的过程中,总是伴随着情感的发生。在人类的日常生活交流中,对于情感的互相感知,是人类流畅交流的重要部分。积极的情感使人身心愉悦,有助于健康且可以提高人的工作效率;消极的情感会引起很多健康问题,例如长时间累积的消极情绪更容易诱发抑郁症甚至是自杀倾向。所以,研究人类的情感就显得十分重要。

大脑是人类情感产生的根源,对于大脑的直接研究,就是从根源上来研究人类的情感。与大脑直接相关的脑电(EEG)信号,作为大脑神经元信息传递过程中发出的一种电信号,为从根源上直接解码人类的情感提供了一种途径和手段。和表情与语音数据不同,脑电数据不能被伪装,因此其更能准确的反应一个人的真实情感。受益于新型无线脑电设备的高可穿戴性、低价格、便携性和易用性等特点,脑电情感识别技术正在逐步走向市场。其可以应用在众多领域如娱乐设施、在线学习、虚拟现实技术和各种电子医疗等。因此,脑电情感识别受到了越来越多研究者的关注,并已经成为情感计算和模式识别领域的一个新的研究热点。然而,脑电情感识别存在准确率不高等问题。

发明内容

发明目的:本发明针对现有技术存在的问题,提供一种基于双半球差异性模型的脑电情感识别方法及装置,识别准确率更高。

技术方案:本发明所述的基于双半球差异性模型的脑电情感识别方法包括:

(1)获取一个脑电情感数据库,包括训练集和测试集,其中,脑电情感数据库中包含有若干脑电情感数据和对应的情感类别标签;

(2)建立脑电情感识别网络,所述脑电情感识别网络包括特征提取器、域判别器和情感分类器,所述特征提取器提取脑电情感数据库中每个脑电情感数据的双半球特征,所述双半球特征中含有大脑左右半球的不对称差异信息,所述域判别器包括两层全连接层,输出为预测的脑电情感数据所属集合,所述情感分类器包括两层全连接层,输出为预测的脑电情感数据的情感类别;

(3)对所述脑电情感识别网络进行训练,训练时,将训练集和测试集中每一脑电情感数据作为一个样本,输入特征提取器,提取双半球特征,并将从训练集和测试集中每一脑电情感数据提取的双半球特征作为一个样本,输入域判别器,将从训练集中每一脑电情感数据提取的双半球特征作为一个样本,输入情感分类器,网络总损失为情感分类器损失减去域判别器损失,通过随机梯度下降法更新网络参数,完成网络训练;

(4)提取待识别的脑电情感数据,将其作为一个测试集样本输入训练好的脑电情感识别网络,并按照步骤(3)对脑电情感识别网络调整,得到识别的情感类别。

进一步的,所述特征提取器具体用于执行如下步骤:

A、对脑电情感数据Xt按照水平顺序和垂直顺序分别进行遍历,得到:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201911343069.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top