[发明专利]一种适应翼面柔性后缘蒙皮弹性模量的确定方法有效
申请号: | 201911348512.6 | 申请日: | 2019-12-24 |
公开(公告)号: | CN111143942B | 公开(公告)日: | 2022-09-20 |
发明(设计)人: | 邓扬晨;李康;杨宇;石欣桐;鲍盘盘;宋述芳 | 申请(专利权)人: | 中国航空工业集团公司沈阳飞机设计研究所 |
主分类号: | G06F30/15 | 分类号: | G06F30/15;G06F119/14 |
代理公司: | 北京航信高科知识产权代理事务所(普通合伙) 11526 | 代理人: | 高原 |
地址: | 110035 辽*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 适应 柔性 后缘 蒙皮 弹性模量 确定 方法 | ||
1.一种适应翼面柔性后缘蒙皮弹性模量的确定方法,其特征在于,包括如下步骤:
步骤一、设定预设条件,并设定模型尺寸参数、电机总功率参数以及曲轴形状参数;
步骤二、计算所述曲轴形状参数中的曲轴尖端一阶导数;
步骤三、根据所述曲轴尖端一阶导数得到柔性蒙皮的弹性模量公式;
步骤四、获取所述模型尺寸参数中与所述弹性模量公式相关的参数的关系式;
步骤五、获取所述电机总功率参数与所述弹性模量公式相关的参数的关系式;
步骤六、将步骤四和步骤五的关系式带入步骤三中的,从而得到柔性蒙皮的弹性模量与所述模型尺寸参数、电机总功率参数以及曲轴形状参数中相关参数的关系;
在所述步骤二中,计算所述曲轴形状参数中的曲轴尖端一阶导数包括:
将弯矩方程为:
M(x)=F(L-x);
代入挠曲线近似微分方程:
积分后得到曲轴尖端一阶导数:
其中,M(x)为柔性翼面承受的弯矩;F为曲轴提供的总驱动力;L为柔性翼面中柔性后缘沿弦向的长度;x为柔性翼面中柔性后缘任一横截面到固定端沿弦向的长度(x=L);w为柔性翼面中柔性后缘沿弦向的挠曲线;E为材料的杨氏模量;I为柔性翼面中柔性后缘的惯性矩;θ为柔性翼面中柔性后缘任一横截的转角;
在所述步骤三中,根据所述曲轴尖端一阶导数得到柔性蒙皮的弹性模量公式包括:
将x=0,θ=0代入曲轴尖端一阶导数,得C=0,即曲轴尖端一阶导数为:
从而得到柔性蒙皮的弹性模量公式为:
在所述步骤四中,所述模型尺寸参数中与所述弹性模量公式相关的参数为柔性翼面中柔性后缘沿弦向的长度L、柔性翼面中柔性后缘任一横截面到固定端沿弦向的长度x(x=L)以及柔性翼面中柔性后缘的惯性矩I;
由于可动后缘百分比为n1%,因此,柔性翼面中柔性后缘沿弦向的长度L关系式为:
L=l*n1%;
由于作用力集中在曲轴尖端,即机翼模型后缘,则柔性翼面中柔性后缘任一横截面到固定端沿弦向的长度x的关系式为:
x=L=l*n1%;
最后,由矩形截面惯性矩计算公式可得柔性翼面中柔性后缘的惯性矩I的关系式为:
其中,l为机翼弦长,b为翼展,t为蒙皮厚度,n1%为可动后缘百分比;
在所述步骤五中,所述电机总功率参数与所述弹性模量公式相关的参数为曲轴提供的总驱动力F;
当曲轴刚开始转动时,对蒙皮向下的驱动力为:
其中,α曲轴最大下偏角;
当曲轴运动到离心距为初始长n2%时,对蒙皮向下的驱动力为:
则平均驱动力为:
则曲轴提供的总驱动力F为:
其中,g为曲轴个数;T为曲轴转矩;n2%曲轴弹簧卡位点百分比。
2.根据权利要求1所述的适应翼面柔性后缘蒙皮弹性模量的确定方法,其特征在于,所述预设条件包括:
曲轴输出的扭转力为线性变化的集中力;
变形后缘为变截面悬臂梁,将变截面悬臂梁等效为等截面梁,取作用力集中的最薄处的转动惯量为等截面悬臂梁的转动惯量;
蒙皮所受驱动力为有限力。
3.根据权利要求1所述的适应翼面柔性后缘蒙皮弹性模量的确定方法,其特征在于,最终得到柔性蒙皮的弹性模量与所述模型尺寸参数、电机总功率参数以及曲轴形状参数中相关参数的关系为:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国航空工业集团公司沈阳飞机设计研究所,未经中国航空工业集团公司沈阳飞机设计研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201911348512.6/1.html,转载请声明来源钻瓜专利网。