[发明专利]一种基于深度学习和集成分类的智能辅助诊断方法有效

专利信息
申请号: 201911353290.7 申请日: 2019-12-25
公开(公告)号: CN111192680B 公开(公告)日: 2021-06-01
发明(设计)人: 樊昭磊;吴军;杨万春;张伯政;孙钊 申请(专利权)人: 山东众阳健康科技集团有限公司
主分类号: G16H50/20 分类号: G16H50/20;G16H50/70;G06F16/33;G06F16/35;G06F40/295;G06F40/30;G06K9/62;G06N3/04;G06N3/08
代理公司: 济南泉城专利商标事务所 37218 代理人: 李桂存
地址: 250001 山东省济南市市辖区*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 深度 学习 集成 分类 智能 辅助 诊断 方法
【说明书】:

一种基于深度学习和集成分类的智能辅助诊断方法。通过命名实体识别和关系抽取,准确提取出了主诉和现病史中的实体和属性,去除了无效信息。在标签主题模型中,加入了特征词的位置权重,提高了关键位置特征词的占比。在多层感知机模型的损失函数中加入了调整参数,解决样本分布不均匀造成的问题。针对相同样本,不同的分类方法得到的分类边界不同,故采用堆叠集成方法将标签主题模型和多层感知机模型进行了集成,提升了疾病的预测准确度。

技术领域

发明涉及医疗信息化技术领域及人工智能技术领域,设计了一种基于深度学习和集成分类的智能辅助诊断方法。

背景技术

随着信息技术和互联网技术的高速发展,在医院信息化、数字化建设中起到核心作用的电子病历,在不断地优化和改善。电子病历中包含了病患症状描述信息,可以辅助医生在面对具有相似症状的患者时,快速作出病情的初步诊断。这对于疑难杂症的初诊或者急症病患的快速查因具有重要的指导意义,同时也有利于通过共享医生的诊疗经验,提高医生的诊断能力。面对大量的医疗电子病历文本数据,发掘其中有价值的症状与诊断结论之间的关联规律,可辅助相关医务人员提高临床诊疗的效率。

临床辅助决策大多基于临床指南等医学知识,并根据这些知识转换成的规则提供决策支持服务,然而维护和更新知识库需要巨大的投入和消耗。随着人工智能技术的发展,通过对大规模数据的文本挖掘,可以不断发现新的知识,得到症状和诊断的相关性。临床辅助决策应用于临床实践还有很多问题有待解决。首先需要能够准确提取出病历文本中的症状体征等命名实体,而信息的提取需要命名实体抽取技术的支持,现阶段基于深度学习的命名实体提取技术还存在识别效率不高、性能不够好等问题。对于医疗实体,由于表述的不规范性,需要结合知识库进行实体内容的标准化。采用机器学习算法对样本向量进行分类,不同的方法得到的分类边界不同,需要综合多种机器学习算法的结果,利用人工智能技术开发智能诊断辅助功能。

目前,在医学领域利用人工智能技术开发智能诊断,已经成为辅助临床诊疗技术研究的方向。因此,通过对电子病历文本信息的自然语言处理,本发明提出一种深度学习和集成分类的医疗智能辅助诊断方法。

发明内容

本发明给出了一套深度学习和集成分类的智能辅助诊断方法。具体的步骤如下:a-1)获取住院记录中的入院记录数据,入院记录中包含了年龄、性别、主诉、现病史、既往史,主诊断信息。利用命名实体识别和关系抽取技术提取相应实体和实体的属性。构建字向量的高维语义表示,采用双向Transformer作为编码器,基于注意力机制来对一段文本进行建模。采用图神经网络得到实体关系。采用B I O E S方案来进行实体标注。

在主诉和现病史中获取症状和属性的方法步骤如下:

步骤1:采用命名实体和关系抽取技术,提取出主诉和现病史中的实体,标记出否定症状;

步骤2:以身体部位、症状体征、体格指标、样本作为枢轴实体,确定枢轴实体的属性;

步骤3:对于提取的实体及属性,进行合并和去重处理。

a-2)利用知识库对提取实体中的诊断和症状进行标准化。知识库包含诊断标准知识库和症状标准知识库,其中诊断标准知识库采用ICD-10编码。

a-3)利用带标签的主题模型进行分类,预测疾病。疾病诊断可看作样本的主题。在主题模型(LDA)的基础上,增加了一层标签集,将主题与类别标签一一映射。主诉中描述了患者的主要症状,现病史是对症状表达内容的进一步补充。针对上述问题,根据特征词在文本中的位置,特征词对类别贡献度构造权值。

该模型中的符号定义如下:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东众阳健康科技集团有限公司,未经山东众阳健康科技集团有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201911353290.7/2.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top