[发明专利]一种基于YOLOv3的空中无人机目标识别和跟踪方法有效

专利信息
申请号: 201911394465.9 申请日: 2019-12-30
公开(公告)号: CN111241931B 公开(公告)日: 2023-04-18
发明(设计)人: 吕艳辉;张德育;冯酉鹏 申请(专利权)人: 沈阳理工大学
主分类号: G06V20/40 分类号: G06V20/40;G06V10/762;G06V10/74
代理公司: 沈阳东大知识产权代理有限公司 21109 代理人: 李珉
地址: 110159 辽*** 国省代码: 辽宁;21
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 yolov3 空中 无人机 目标 识别 跟踪 方法
【权利要求书】:

1.一种基于YOLOv3的空中无人机目标识别和跟踪方法,其特征在于,包括下述步骤:

步骤1:制作训练集;

步骤1.1:将无人机作为空中飞行目标,获取无人机飞行视频;

步骤1.2:对无人机飞行视频进行分帧处理,得到多帧图片构成待筛选图片集;

步骤1.3:对待筛选图片集中重复的和没有目标物的图片按一定比例进行筛除,待筛选图片集中剩余的图片构成待处理图片集;

步骤1.4:对待处理图片集中的每帧图片进行预处理,得到预处理后的图片集;

步骤1.5:对预处理后的图片集中的每帧图片标记出无人机区域框,并标注无人机区域框中无人机的类别信息和位置信息,生成训练集;其中,所述位置信息包括无人机区域框的中心点坐标、宽、高;

步骤2:改进候选框参数;

步骤2.1:在不同的聚类数目K下,基于K-means聚类算法对训练集中的无人机区域框进行聚类,得到每种K值下的K个最优聚类中心,统计每种K值下的损失函数值;

步骤2.2:绘制损失函数值与K值之间的关系图,采用手肘法找到最优K值,得到最优K值下的K个最优聚类中心,将最优K值下的K个最优聚类中心作为YOLOv3的初始候选框参数写入配置文件,获得改进的YOLOv3;

步骤3:利用训练集训练YOLOv3中的Darknet-53模型;

步骤4:获取待跟踪无人机的飞行视频,初始化i=1,在第1帧图像中手动获取跟踪目标,将第1帧图像中的跟踪目标设为目标模板,提取目标模板的HSV直方特征向量、HOG直方特征向量;

步骤5:令i=i+1,根据第i-1帧图像中跟踪目标的位置信息生成第i帧图像的K*近邻搜索区域,利用训练后的YOLOv3模型对K*近邻搜索区域进行检测,输出K*近邻搜索区域中目标的类别及预测的多个目标候选框;

步骤6:留存与目标模板类别相同的目标候选框,进入步骤7;若没有与目标模板类别相同的目标候选框,则以第i-1帧图像的跟踪目标为第i帧图像的跟踪目标,进入步骤8;

步骤7:依次提取每个目标候选框的HSV直方特征向量、HOG直方特征向量,计算每个目标候选框与目标模板的HSV直方图间的相似度、HOG直方图间的相似度,并计算每个目标候选框与目标模板的相似度得分,选取最高相似度得分对应的目标候选框作为第i帧图像的跟踪目标;

步骤8:若i≥n,则结束跟踪;若i<n,则执行步骤9;其中,n为待跟踪无人机的飞行视频的总帧数;

步骤9:判断第i帧图像的跟踪目标是否达到目标模板更新条件,若达到则更新目标模板为第i帧图像的跟踪目标,转至步骤5;若未达到则转至步骤5。

2.根据权利要求1所述的基于YOLOv3的空中无人机目标识别和跟踪方法,其特征在于,所述步骤1.1中,所述无人机包括小型四旋翼无人机和小型固定翼无人机;所述步骤1.4中,所述预处理包括灰度化、几何变换、图像增强、图像颜色调整。

3.根据权利要求1所述的基于YOLOv3的空中无人机目标识别和跟踪方法,其特征在于,所述步骤3中,利用训练集训练YOLOv3中的Darknet-53模型,包括:

步骤3.1:将训练集导入到YOLOv3中,修改voc.names文件、cfg文件中的voc.data文件、yolov3-voc.cfg文件;

步骤3.2:导入训练权重文件darknet53.conv.74后,训练YOLOv3模型。

4.根据权利要求1所述的基于YOLOv3的空中无人机目标识别和跟踪方法,其特征在于,所述步骤4中,提取目标模板的HOG直方特征向量包括:

步骤4.1:对目标模板进行Gamma校正;

步骤4.2:计算目标模板中每个像素点在横坐标方向的梯度gx、纵坐标方向的梯度gv,并计算每个像素点的梯度的幅值和方向角分别为

步骤4.3:将目标模板分成多个细胞单元,统计每个细胞单元的梯度直方图,形成每个细胞单元的特征描述子;

步骤4.4:选取多个细胞单元组合成块,在每个块内归一化梯度直方图;

步骤4.5:收集检测窗口中所有重叠的块的HOG特征,构成目标模板的HOG直方特征向量。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于沈阳理工大学,未经沈阳理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201911394465.9/1.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top