[发明专利]电子设备、其图像处理方法及计算机可读记录介质在审

专利信息
申请号: 201980014451.1 申请日: 2019-02-20
公开(公告)号: CN111771226A 公开(公告)日: 2020-10-13
发明(设计)人: 泰哈斯·奈尔;李宰成;李泰美 申请(专利权)人: 三星电子株式会社
主分类号: G06T5/00 分类号: G06T5/00;H04N5/907;H04N5/235
代理公司: 北京英赛嘉华知识产权代理有限责任公司 11204 代理人: 王达佐;杨莘
地址: 韩国京畿道水*** 国省代码: 暂无信息
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 电子设备 图像 处理 方法 计算机 可读 记录 介质
【说明书】:

本公开涉及利用包括深度学习等的机器学习算法的人工智能(AI)系统及其应用。特别地,本公开的电子设备包括:存储器,包括至少一个命令;以及处理器,连接到存储器以控制电子设备,其中,处理器通过执行至少一个命令而执行以下操作:获取图像,基于拍摄图像的相机的配置信息或图像的亮度信息获取用于对图像的噪声进行校正的噪声校正图,并通过噪声校正图去除图像的噪声。特别地,图像处理方法的至少一部分可以使用通过根据机器学习算法、神经网络算法和深度学习算法中的至少一个的学习而获取的人工智能模型。

技术领域

本公开涉及电子设备、其图像处理方法和计算机可读记录介质,且更具体地,涉及使用图像的亮度信息来去除噪声的电子设备、其图像处理方法及计算机可读记录介质。

本公开还涉及使用机器学习算法来模拟人脑的识别功能、决策功能等的人工智能(AI)系统及其应用。

背景技术

近来,实现人类水平的智慧的人工智能系统已经在各种领域中使用。人工智能系统是这样一种系统,在该系统中,机器执行学习和决策,并且与现有的基于规则的智能系统不同,机器通过本身变得智能。随着更多地使用人工智能系统,提高了识别率,并且可以更准确地理解用户的兴趣。因此,现有的基于规则的智能系统逐渐被基于深度学习的人工智能系统所替代。

人工智能技术包括机器学习(例如,深度学习)和使用机器学习的元件技术。

机器学习是通过其本身对输入数据的特征进行分类/学习的算法技术,且元技术是利用诸如深度学习等机器学习算法来模拟人脑的识别、决策等功能的技术,并且包括语言理解、视觉理解、推理/预测、知识表示、运动控制等技术领域。

应用人工智能技术的各种领域如下。语言理解是识别和应用/处理人类语言/字符的技术,且包括自然语言处理、机器翻译、对话系统、问答、语音识别/合成等。视觉理解是识别和处理如人类视觉的事物的技术,且包括对象识别、对象跟踪、图像搜索、人类识别、场景理解、空间理解、图像改进等。推断/预测是通过决定信息来执行逻辑推断和预测的技术,并且包括基于知识/概率的推断、优化预测、基于偏好的规划、推荐等。知识表示是将人类体验信息自动化并作为知识数据处理的技术,且包括知识构建(数据创建/分类)、知识管理(数据利用)等。运动控制是控制车辆的自动驾驶和机器人的运动的技术,且包括运动控制(导航、碰撞、驾驶)、操纵控制(行为控制)等。

同时,近来,由于数码相机的普及,减少了生成静止图像或运动图像的时间和地点的限制。此外,随着图像技术的发展,对于不是专业人员的普通人来说,能够容易地获取高清晰度图像。

然而,存在这样的问题:在诸如晚间或封闭空间的黑暗的周围环境中生成的图像包括大量噪声,使得图像质量降低。

为了解决这种问题,传统上,测量图像的噪声并且对噪声的每个强度执行滤波以去除噪声。在这种情况下,通过分析图像的频率来测量噪声,且因此,没有考虑图像的局部特征。例如,存在许多不清楚图像中的任何部分是边缘还是图像中存在的噪声的情况。因此,已经出现了因对补偿图像中不是噪声的区域进行滤波而存在模糊区域并且丢失了图像的纹理而使得图像质量降低的问题。

此外,在使用人工智能模型来去除噪声的相关技术中,对所测量的噪声的每个强度使用了单独的模型。在这种情况下,为噪声的每个强度准备的多个模型中的每一个都应该被训练,因此,存在许多输入数据和存储器被用于训练的问题。

发明内容

技术问题

本公开提供了使用图像的亮度信息去除噪声的电子设备、其图像处理方法及计算机可读记录介质。

技术方案

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于三星电子株式会社,未经三星电子株式会社许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201980014451.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top