[发明专利]用于在深度学习人工神经网络中对模拟神经存储器进行编程的方法和设备在审

专利信息
申请号: 201980018437.9 申请日: 2019-01-18
公开(公告)号: CN111837190A 公开(公告)日: 2020-10-27
发明(设计)人: H·V·特兰;V·蒂瓦里;N·多;M·雷顿 申请(专利权)人: 硅存储技术股份有限公司
主分类号: G11C16/34 分类号: G11C16/34;G11C16/02;G11C16/26
代理公司: 上海专利商标事务所有限公司 31100 代理人: 陈斌
地址: 美国加利*** 国省代码: 暂无信息
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 用于 深度 学习 人工 神经网络 模拟 神经 存储器 进行 编程 方法 设备
【说明书】:

本发明公开了与人工神经网络中的矢量‑矩阵乘法(VMM)阵列一起使用的编程系统和方法的许多实施方案。因此,可极精确地对所选单元进行编程,以保持N个不同值中的一个值。

优先权声明

本申请要求于2018年3月14日提交的标题为“Method and Apparatus forProgramming Analog Neuromorphic Memory in an Artificial Neural Network”的美国临时专利申请62/642,878和于2018年5月25日提交的标题为“Method And Apparatus ForProgramming Analog Neural Memory In A Deep Learning Artificial NeuralNetwork”的美国专利申请15/990,395的优先权。

技术领域

本发明公开了与人工神经网络中的矢量-矩阵乘法(VMM)阵列一起使用的编程设备和方法的许多实施方案。

背景技术

人工神经网络模拟生物神经网络(动物的中枢神经系统,特别是大脑),这些人工神经网络用于估计或近似可取决于大量输入并且通常未知的功能。人工神经网络通常包括互相交换消息的互连“神经元”层。

图1示出了人工神经网络,其中圆圈表示神经元的输入或层。连接部(称为突触)用箭头表示,并且具有可以根据经验进行调整的数值权重。这使得神经网络适应于输入并且能够学习。通常,神经网络包括多个输入的层。通常存在神经元的一个或多个中间层,以及提供神经网络的输出的神经元的输出层。处于每一级别的神经元分别地或共同地根据从突触所接收的数据作出决定。

在开发用于高性能信息处理的人工神经网络方面的主要挑战中的一个挑战是缺乏足够的硬件技术。实际上,实际神经网络依赖于大量的突触,从而实现神经元之间的高连通性,即非常高的计算并行性。原则上,此类复杂性可通过数字超级计算机或专用图形处理单元集群来实现。然而,相比于生物网络,这些方法除了高成本之外,能量效率也很普通,生物网络主要由于其执行低精度的模拟计算而消耗更少的能量。CMOS模拟电路已被用于人工神经网络,但由于给定大量的神经元和突触,大多数CMOS实现的突触都过于庞大。

申请人先前在美国专利申请15/594,439中公开了一种利用一个或多个非易失性存储器阵列作为突触的人工(模拟)神经网络,该专利申请以引用方式并入本文。非易失性存储器阵列作为模拟神经形态存储器操作。神经网络装置包括被配置为接收第一多个输入并从其生成第一多个输出的第一多个突触,以及被配置为接收第一多个输出的第一多个神经元。第一多个突触包括多个存储器单元,其中存储器单元中的每个存储器单元包括:形成于半导体衬底中的间隔开的源极区和漏极区,其中沟道区在源极区和漏极区之间延伸;设置在沟道区的第一部分上方并且与所述第一部分绝缘的浮栅;以及设置在沟道区的第二部分上方并且与所述第二部分绝缘的非浮栅。多个存储器单元中的每一个被配置为存储与浮栅上的多个电子相对应的权重值。多个存储器单元被配置为将第一多个输入乘以所存储的权重值以生成第一多个输出。

必须擦除和编程在模拟神经形态存储器系统中使用的每个非易失性存储器单元,以在浮栅中保持非常特定且精确的电荷量。例如,每个浮栅必须保持N个不同值中的一个,其中N是可由每个单元指示的不同权重的数量。N的示例包括16、32和64。

VMM系统中的一个挑战是能够以不同N值所需的精度和粒度对所选单元进行编程。例如,如果所选单元可包括64个不同值中的一个值,则在编程操作中需要极端精度。

所需要的是适于与模拟神经形态存储器系统中的VMM一起使用的改进的编程系统和方法。

发明内容

本发明公开了与人工神经网络中的矢量-矩阵乘法(VMM)阵列一起使用的编程系统和方法的许多实施方案。因此,可极精确地对所选单元进行编程,以保持N个不同值中的一个值。

附图说明

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于硅存储技术股份有限公司,未经硅存储技术股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201980018437.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top