[发明专利]一种基于引导滤波器的鲁棒深度图结构重建和去噪方法有效
申请号: | 202010007506.0 | 申请日: | 2020-01-04 |
公开(公告)号: | CN111223059B | 公开(公告)日: | 2022-02-11 |
发明(设计)人: | 杨勐;陈翔;光宇杰;成钰;郑南宁 | 申请(专利权)人: | 西安交通大学 |
主分类号: | G06T5/00 | 分类号: | G06T5/00;G06T5/50;G06T7/50 |
代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 高博 |
地址: | 710049 *** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 引导 滤波器 深度 结构 建和 方法 | ||
本发明公开了一种基于引导滤波器的鲁棒深度图结构重建和去噪方法,对结构错误区域进行探测,检测输入深度图经过大窗口的引导滤波和小窗口的引导滤波差别较大的地方,由于大窗口下引导滤波可以出现羽化效果,而小窗口的引导滤波仅起到平滑的作用,因此差别较大的区域可以认为是结构错误区域,标记为潜在结构错误区域,然后基于迭代重加权最小二乘算法构建权重,权重构建完成后进行整体求解并更新深度图,根据结果判断是否达到设定的迭代次数,如果达到则输出深度图结束计算,否则重新进行对结构错误区域探测。本发明能够抑制强噪声,并且能够修复深度图和彩色图结构错误区域,提高深度图和彩色图的一致性,恢复出正确的深度图边界,对提高合成视图的质量有重要的指导意义。
技术领域
本发明属于图像处理技术领域,具体涉及一种基于引导滤波器的鲁棒深度图结构重建和去噪方法。
背景技术
随着深度传感器的问世及立体显示技术的快速发展,深度图成为近年来的研究热点。深度图的获取方式有主动式和被动式两种。主动式主要是由单个视点的可见光数据进行深度估计,或者由两个(或多个)视点的可见光数据进行立体匹配计算相应位置的视差,然后根据几何关系转化为深度图。随着深度学习在计算机视觉领域的成功应用,主动式得到的深度图准确度有了很大的提高。但是这类方法对可见光数据中的纹理信息要求较高,深度图结构区域精度低,尤其是在弱纹理区域难以计算出深度数据,导致数据缺失,在实际应用中有一定的局限性。被动式主要是指由深度传感物理器件直接获取深度图像,常用的深度传感器根据原理分为ToF(Time of Flight)和Structure Light(结构光)两类,ToF通过测量光脉冲之间的传输延迟时间来计算深度信息,实时性强。但是,ToF获取的深度图往往分辨率很低且存在随机噪声。结构光通过向测量空间发射红外线,再由红外摄像机记录空间中物体反射形成的散斑,通过计算得到深度图像,成本低廉。但是,结构光获取的深度图精度较低,尤其是在结构区域往往包含数据错误或者缺失,还包含有大量噪声。
由此可见,无论是主动方式还是被动方式获得的深度图质量都较低,尤其是在图像结构区域包含严重的失真。在实际三维视觉系统中,相关应用往往要求高质量的深度图数据,尤其是其几何结构要和同视点的可见光数据要严格一致。比如,在基于深度图像绘制的视图合成方法的3DTV系统中,它利用深度图像将对应的彩色图像经过一系列的三维变换和视图融合生成合成视点图像,因此合成图像质量的高低依赖于输入图像的质量,除了深度图像的噪声和空洞的影响外,深度图和彩色图的边缘的一致性也有较高的要求,否则会引起合成图像的裂纹和空洞,给后续合成图像的空洞填充带来负担。因此,如何重建深度图数据的几何结构和恢复出高质量的深度图在三维视觉系统开发中是一个亟待解决的难题。
目前主流的深度图修复技术主要是利用彩色图和深度图的信息来实现深度图的恢复,比如经典的三边滤波器和引导滤波器。现有一种彩色图引导深度图恢复的自回归模型,联合初始深度图的局部信息和彩色图的非局部信息构建回归系数,通过最小化自回归预测误差来实现对深度图的去噪和超分。还有针对自适应带宽的迭代重加权最小二乘算法,通过计算深度图的相对平滑度来确定带宽,同时每次在迭代中更新平滑项的权重,使得模型更加鲁棒。这两种经典算法都采用了彩色图来引导深度图实现恢复,其基本假设是深度图和彩色图的边界完全一致,然而在实际应用中这一假设很难成立,因此对于深度图和彩色图不一致的区域就会引起深度图边界模糊和纹理引入。现有提出了明确度量深度图和彩色图一致性的加权最小二乘的模型,通过提取深度图和彩色图的边缘,采用二分图匹配和图割优化,找到深度图边缘偏移量,以此来定义不一致性,在平滑项中由不一致性来平衡彩色图和深度图梯度对输出的影响。这个方法考虑到了深度图和彩色图不一致的影响,但边缘提取高度依赖于图像梯度,抗噪能力差,且一致性度量仅在边缘有效,无法实现不一致区域值的修复,适用范围有限。第四类是采用Gaussian核函数提出了一种度量同视点可见光数据和深度图几何结构不一致性的模型,并实现了一种深度图结合结构重建的方法。但是,该方法不适用于包含强噪声的深度图。
发明内容
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010007506.0/2.html,转载请声明来源钻瓜专利网。