[发明专利]业务对象预测方法、装置、设备及可读存储介质在审

专利信息
申请号: 202010009409.5 申请日: 2020-01-03
公开(公告)号: CN111210071A 公开(公告)日: 2020-05-29
发明(设计)人: 李权;郑明华;李敏镭;韩森;魏帅超;郭炼杰;钟志明;李炫彬;詹子知;彭娴睿;陈天健 申请(专利权)人: 深圳前海微众银行股份有限公司
主分类号: G06Q10/04 分类号: G06Q10/04;G06K9/62
代理公司: 深圳市世纪恒程知识产权代理事务所 44287 代理人: 王韬
地址: 518000 广东省深圳市前海深港合作区前*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 业务 对象 预测 方法 装置 设备 可读 存储 介质
【说明书】:

发明公开了一种业务对象预测方法、装置、设备及可读存储介质,方法包括:将多个业务对象类别进行聚类,得到多个类簇;对各个类簇的历史业务数据分别在至少两个的业务预测模型下进行分析,以获得各个类簇分别对应的预测结果;将各个类簇的历史业务数据分别和对应的预测结果相比较,并根据比较结果确定用于预测各个类簇的业务预测目标模型;确定目标业务对象所在的目标类簇,并基于目标类簇所对应的业务预测目标模型对目标业务对象进行预测。这样,确定目标业务对象所在的类簇,并基于该类簇所对应的业务预测目标模型进行预测,从而不必将目标业务对象分别在多个业务预测模型下运算分析以获得预测结果并选择恰当的业务预测模型,节省了时间。

技术领域

本发明涉及金融科技(Fintech)领域,尤其涉及一种业务对象预测方法、装置、设备及可读存储介质。

背景技术

伴随着金融科技(Fitech),尤其是互联网金融科技的快速发展,已经有越来越多的技术应用于金融领域,例如可以通过许多模型算法帮助人们进行业务对象的预测。

随着零售行业的发展,零售行业中的业务对象预测问题成为热点,即基于历史业务对象销量数据预测未来一段时间内的业务对象的销量。目前,有许多模型算法可以帮助人们进行业务对象的预测,如基于时间序列的预测算法Arima、Arimax以及Prophet等,基于机器学习模型的算法XGB、RandomForest等,基于深度学习模型的算法如LSTM等。在实际使用这些模型算法会发现,同一个模型算法,它的预测准确度值对于不同的业务对象,其预测准确度值的差异较大,而不同的模型算法,对于同一类业务对象,它们的预测准确度值差异也较大。因此,业务人员难以根据某一类业务对象而选择最恰当的模型算法,进而无法快速地对业务对象作出针对性的预测分析的技术问题。

发明内容

本发明的主要目的在于提供一种业务对象预测方法、装置、设备及可读存储介质,旨在解决业务人员难以根据某一类业务对象而选择最恰当的模型算法,进而无法快速地对业务对象作出针对性的预测分析的技术问题。

为实现上述目的,本发明提供一种业务对象预测方法,所述方法包括:

将多个业务对象类别进行聚类,得到多个类簇;

对各个所述类簇的历史业务数据分别在至少两个的业务预测模型下进行分析,以获得各个所述类簇分别对应的预测结果;

将各个所述类簇的历史业务数据分别和对应的所述预测结果相比较,并根据比较结果确定用于预测各个所述类簇的业务预测目标模型;

确定目标业务对象所在的目标类簇,并基于所述目标类簇所对应的所述业务预测目标模型对所述目标业务对象进行预测。

进一步地所述将多个业务对象类别进行聚类,得到多个类簇的步骤,包括:

获取多个所述业务对象类别的历史业务数据,并将多个所述业务对象类别的历史业务数据分别构建成相对应的多个时间序列特征数据;

计算各个所述时间序列特征数据之间的第一相似度,基于所述第一相似度将多个所述业务对象类别划分为多个所述类簇。

进一步地,所述计算各个所述时间序列特征数据之间的第一相似度,基于所述第一相似度将所述多个业务对象类别划分为多个所述类簇的步骤之后,包括:

将多个所述类簇进行降维,并在二维平面进行显示。

进一步地所述对各个所述类簇的历史业务数据分别在至少两个的业务预测模型下进行分析,以获得各个所述类簇分别对应的预测结果的步骤,包括:

根据多个所述业务对象类别的历史业务数据分别构建至少两个的所述业务预测模型,其中所述业务预测模型是用于对所述业务对象类别进行预测;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳前海微众银行股份有限公司,未经深圳前海微众银行股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010009409.5/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top