[发明专利]基于堆栈稀疏自编码的多维力传感器的解耦方法有效
申请号: | 202010095341.7 | 申请日: | 2020-02-17 |
公开(公告)号: | CN111256906B | 公开(公告)日: | 2020-08-25 |
发明(设计)人: | 杨忠;宋爱国;徐宝国;唐玉娟;吴有龙 | 申请(专利权)人: | 金陵科技学院 |
主分类号: | G01L25/00 | 分类号: | G01L25/00;G06N3/04;G06N3/08 |
代理公司: | 南京众联专利代理有限公司 32206 | 代理人: | 蒋昱 |
地址: | 210000 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 堆栈 稀疏 编码 多维 传感器 方法 | ||
基于堆栈稀疏自编码的多维力传感器的解耦方法。该方法包括以下步骤:步骤1,获取实验标定数据:步骤2,获取模拟噪声环境数据:步骤3,增加标定数据的维度:步骤4,堆栈稀疏自编码器预训练:步骤5,对预训练的堆栈稀疏自编码器进行微调,以提高模型的精确性;步骤6,将训练获得的堆栈稀疏自编码模型嵌入传感器及其采集系统中,并实际应用。本发明在堆栈自编码器和原创性的模拟噪声环境下传感器采集数据方法的基础上,提出了基于堆栈稀疏自编码的多维力传感器的解耦方法。为尽可能的降低环境噪声对传感器采集的数据的影响,本发明通过模拟噪声环境对传感器采集数据的影响,增强训练得到的模型的鲁棒性。
技术领域
本发明涉及多维力传感器检测数据解耦领域,特别是涉及基于堆栈稀疏自编码的多维力传感器的解耦方法。
背景技术
多维力传感器作为一类精密性高、可靠性稳定的传感器,在汽车制造、生物力学、机器人、航空航天、轻纺工业、自动化流水线装配等领域得到了广泛的应用,并逐渐成为了不可或缺的核心部件。因此,多维力传感器测量的精度和可靠性成为了衡量传感器好坏的重要指标。
从目前的研究来看,增强多维力传感器测量精度主要有以下两大途径:优化传感器的结构和优化传感器的解耦算法。对前一种方法,其易受诸如传感器结构加工误差、应变片贴片位置等多种因素影响,导致在数据测量时引入了不确定因素,且很难对不确定因素进行校正。而对于后一种方法,随着软硬件技术的不断飞跃发展,大大降低了算法层面上的时间成本和计算成本,同时提高了算法的可实施性,因此得到了较多的成果。另一方面,实际的解耦模型需要克服环境噪声的干扰,同时能够有持续稳定的输出,这对算法解耦提出了更高的要求,而这也是算法解耦的难点之一。因此,设计一个具有良好的鲁棒性和稳定性高的解耦模型是非常有必要的。
国内涉及多维力传感器解耦方法的专利有“基于遗传算法的多维力传感器标定实验数据拟合方法”(201610232792.4),通过推导传感器耦合误差理论模型的系数求解公式,而后利用遗传算法在MATLAB软件上进行全局最优解的确定,从而解决数据拟合问题,但该专利中的遗传算法求得的最优解可能是局部最优而非全局最优,导致拟合误差增大。国家发明专利“一种多维力传感器动态解耦方法”(201910160583.7),该方法首先对传感器进行动态测试,而后对输出信号进行动态补偿,最后将经过补偿后的信号带入解耦模型中以实现解耦,但是该方法中并没有考虑到实际工业环境下嘈杂的噪声对传感器采集数据的影响,在实际应用中可能存在一定的局限性。由此可见,设计一个具有良好鲁棒性的多维力传感器是非常有必要的。
发明内容
为解决上述问题,本发明在堆栈自编码器和原创性的模拟噪声环境下传感器采集数据方法的基础上,提出了基于堆栈稀疏自编码的多维力传感器的解耦方法。为尽可能的降低环境噪声对传感器采集的数据的影响,本发明通过模拟噪声环境对传感器采集数据的影响,增强训练得到的模型的鲁棒性。另外,为了避免模型的过拟合和增强特征数据的可分性,本发明采用了堆栈稀疏自编码器,通过对传统的自编码器的网络隐藏层神经元添加稀疏惩罚因子以实现强制性稀疏限制,同时堆栈稀疏自编码的使用增强了网络模型的稳定性。为达此目的,本发明提供基于堆栈稀疏自编码的多维力传感器的解耦方法,具体步骤如下,其特征在于:
步骤1,获取实验标定数据:利用不同质量的砝码(力F)作用于多维力传感器(6维),通过采集系统获取相应的输出电压U;
步骤2,获取模拟噪声环境数据:向步骤1中获取的输出电压U中添加高斯白噪声以模拟噪声环境下所采集信号受到的干扰,此处的信噪比范围控制为20~30dB;
步骤3,增加标定数据的维度:将步骤2中得到的每4组的电压数据首尾拼接以得到Usplice,而后对Usplice归一化至[0,1]以生成训练数据Utrain;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于金陵科技学院,未经金陵科技学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010095341.7/2.html,转载请声明来源钻瓜专利网。