[发明专利]一种基于贝叶斯神经网络的点云识别与分割方法有效

专利信息
申请号: 202010098524.4 申请日: 2020-02-18
公开(公告)号: CN111325757B 公开(公告)日: 2022-12-23
发明(设计)人: 王靖宇;王霰禹;张科;黄鹏飞;张琦珂;张国俊;罗华 申请(专利权)人: 西北工业大学
主分类号: G06T7/11 分类号: G06T7/11;G06N3/04;G06N3/08
代理公司: 西安凯多思知识产权代理事务所(普通合伙) 61290 代理人: 刘新琼
地址: 710072 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 贝叶斯 神经网络 识别 分割 方法
【权利要求书】:

1.一种基于贝叶斯神经网络的点云识别与分割方法,其特征在于:所述的贝叶斯神经网络包括特征提取、识别和分割三部分;其中特征提取部分包含三层贝叶斯卷积层,每个卷积层后连接一个激活层;识别部分的网络结构为三层全连接层,最终输出层节点数量与类别数量相同;分割部分的网络结构为三层贝叶斯卷积层,每个卷积层后连接一个激活层,最终输出层节点个数与点云中包含点的个数相等,每个节点输出一个长度与类别数量相等的向量;步骤如下:

步骤1:首先利用最远点采样方法对点云进行关键点提取,然后经过第一层贝叶斯卷积层和第一层激活层得到第一级特征F1,重复上述步骤分别得到特征提取部分的二级特征F2和三级特征F3

步骤2:对于识别任务,直接将F3矩阵拉直为一维向量输入识别部分的全连接层,经过三层全连接层计算并将最终结果进行归一化指数函数计算得到识别结果;

步骤3:对于分割任务,将F3输入分割部分,通过第一层贝叶斯卷积层和激活层得到第一级分割特征F1′,并将该特征矩阵与F2拼接得到特征矩阵[F1′,F2];将合并的特征矩阵通过第二层贝叶斯卷积层和激活层得到第二级分割特征F′2,并将该特征矩阵与F1拼接得到特征矩阵[F′2,F1];最终将特征矩阵[F′2,F1]通过第三层贝叶斯卷积层计算,得到每个点的所属类别,从而实现分割。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北工业大学,未经西北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010098524.4/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top