[发明专利]一种基于粒子群优化BP神经网络的多维力传感器标定解耦方法在审
申请号: | 202010099165.4 | 申请日: | 2020-02-18 |
公开(公告)号: | CN111272334A | 公开(公告)日: | 2020-06-12 |
发明(设计)人: | 杨忠;宋爱国;徐宝国;王敏;陈维娜 | 申请(专利权)人: | 金陵科技学院 |
主分类号: | G01L25/00 | 分类号: | G01L25/00;G06N3/00;G06N3/04 |
代理公司: | 南京众联专利代理有限公司 32206 | 代理人: | 蒋昱 |
地址: | 210000 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 粒子 优化 bp 神经网络 多维 传感器 标定 方法 | ||
1.一种基于粒子群优化BP神经网络的多维力传感器标定解耦方法,具体步骤如下,其特征在于;
1)采集多维力传感器的标定数据;
将传感器和载荷加载器安装在标定支架台上,载荷加载器使用不同标准重量的重物给传感器施加压力和扭矩,每次加载可以精确获得各个维度载荷值,施加荷载后传感器内部发生形变,并经信号放大电路产生相应的差分电压信号,分别对应相应维度分量的电压信号,数据采集卡收集各路的电压信号,经A/D转换后将相应分量的数据采集到工控机的上位机;
根据传感器的测量范围,在各个维度分成若干个等间距测量点,且平均分布在测量范围;多次调整重物的大小和作用力距离加载出不同测量点组合的载荷,并记录对应的六维电压信号,将采集的数据作为训练样本集;
样本集可表示为∏=(XU,YF),其中,XU=(x1,x2,x3,x4,x5,x6)对应于每次加载传感器各路产生的电压信号作为多维力传感器标定解耦网络模型的输入量,YF=(y1,y2,y3,y4,y5,y6)对应于每次加载在传感器各个维度的实际载荷量Fx,Fy,Fz,Mx,My,Mz,作为多维力传感器标定解耦网络模型的输出量;
2)搭建多维力传感器解耦的BP神经网络模型;
由于三个方向力的大小和三个方向力矩的大小往往相差多个数量级,因而在力解耦之前需要将力和力矩数据(Fx,Fy,Fz,Mx,My,Mz)进行归一化处理,采用最大最小值归一化法,得到归一化的数据分别表示相应力/力矩归一化处理后的值,即
其中,为力/力矩归一化后的值;yi为第i个力/力矩的原始值,ymax,ymin分别为yi中的最大值和最小值;
其中多维力传感器解耦的BP神经网络由三层组成,分别输入层、隐含层、输出层,输入层节点数为m和输出层节点数为n,由BP神经网络经验函数式和确定隐含层节点数s,其中f为1至9之间的整数,根据经验,设定隐含层节点数s为9,则确定该BP神经网络的拓扑结构n-s-m;
隐含层第j个神经元输出为
其中ωij表示输入层神经元i与隐含层神经元j之间的连接权值,aj表示隐含层神经元j的阈值,g()是隐含层神经元的激活函数,采用Sigmoid函数;
输出层第k个神经元输出为
其中μjk表示隐含层神经元j与输出层神经元k之间的连接权值,bk表示输出层神经元j的阈值;
下面对上述BP网络进行训练学习:将训练集中的每个样本依次输入训练,根据上面的公式得出hj和yk,计算均方误差其中ok为样本的实际值;
3)PSO算法优化训练获得最优多维力传感器解耦模型
根据步骤2中搭建的BP网络拓扑结构,计算出共有(n+1)*s+(s+1)*m中网络参数,即对123维BP神经网络的初始权重值、阈值进行优化;
将BP网络中的初始权重和阈值按输入层-隐藏层的连接权重、隐含层神经元阈值、隐含层-输出层连接权重值以及输出层神经元阈值的顺序作为编码顺序;
采用实数编码方式,在创建的每个个体为123维的向量个体,向量中的每个个体的编码值的范围在-1到1之间,对应于连接权重和阈值的范围;
选取种群大小为30,迭代次数为100,确定位置边界[Xmin,Xmax]和速度边界[Vmin,Vmax]分别为[-1,1]和[-0.2,0.2],随机初始化群体中每个粒子的位置和速度;
以粒子作为初始权重、阈值带入BP神经网络结合训练样本集进行训练,计算适应度值其中,T为训练样本数量,Yij为第i个样本的第j个输出期望值,yij为第i个样本的第j个输出实际值,同时,得出个体最优位置Pp和群体最优位置Pg以及它们对应的个体极值和群体极值;
更新粒子速度Vi,k+1=wVi,k+c1r1(Pp,k-Xi,k)+c2r2(Pg,k-Xi,k),其中Vi,k+1为第k次迭代中第i个粒子的速度,c1、c2分别为加速因子,r1、r2为0-1之间的随机数,若计算的值超出速度范围[Vmin,Vmax]则用边界值代替;
更新粒子位置Xi,k+1=Xi,k+Vi,k+1,其中,Xi,k+1为第k次迭代中第i个粒子的位置,若计算的值超出速度范围[Xmin,Xmax]则用边界值代替;
重新计算适应度值后,更新极值对应的例子位置,若误差达到精度要求则结束PSO寻优,得出寻优后的最优粒子位置作为优化后的BP神经网络的初始权重值和阈值,并结合样本集进行训练,得出最优的粒子群优化BP多维力传感器解耦模型;
4)基于最优多维力传感器解耦模型测试;
在建立了最优的粒子群优化BP多维力传感器解耦模型后,实时采集多维力传感器的各路电源信号,通过粒子群优化BP模型计算得出相应的再由反归一化获得最终的多维力结果(Fx,Fy,Fz,Mx,My,Mz)。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于金陵科技学院,未经金陵科技学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010099165.4/1.html,转载请声明来源钻瓜专利网。