[发明专利]一种顾及时空关联性的城市空气质量时序预测方法在审
申请号: | 202010114790.1 | 申请日: | 2020-02-25 |
公开(公告)号: | CN111340288A | 公开(公告)日: | 2020-06-26 |
发明(设计)人: | 关庆锋;吕建军;姚尧 | 申请(专利权)人: | 武汉墨锦创意科技有限公司 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06F16/2458;G06F16/28;G06F16/215 |
代理公司: | 北京汇泽知识产权代理有限公司 11228 | 代理人: | 代婵 |
地址: | 430074 湖北省武汉市东湖新技术开发区光谷大道77号*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 顾及 时空 关联性 城市 空气质量 时序 预测 方法 | ||
1.一种顾及时空关联性的城市空气质量时序预测方法,其特征在于,包括如下步骤:
S1)采集城市空间范围内所设立的空气质量监测站点的历史时段记录数据,将采集的历史时段记录数据进行数据匹配形成多特征变量在不同空气质量站点的时序记录数据;
S2)对步骤S1)采集的时序记录数据进行数据预处理,最终形成时序完整的气象数据;
S3)将待预测站点历史时刻的气象数据输入到奇异谱分析模型中,得到待预测站点预测数据;利用构建的时空相关立方体来提取在待预测时刻和待预测站点相关性最强的前K个站点的预测数据作为辅助站点数据;
S4)将通过时空相关立方体提取到的辅助站点数据和利用奇异谱分析模型得到的待预测站点预测数据进行耦合,共同组成输入特征集,将输入特征集放入随机森林模型之中,由随机森林模型预测得到待预测站点在待预测时刻的最终的预测结果。
2.根据权利要求1所述的顾及时空关联性的城市空气质量时序预测方法,其特征在于:步骤S1)中的数据匹配是指将由空气质量监测站点所采集到的数据按照采集时间、采集站点、所属类别进行匹配,规范数据,得到的数据为各站点在不同时刻的气象监测数据。
3.根据权利要求1所述的顾及时空关联性的城市空气质量时序预测方法,其特征在于:采集的城市空间范围内所设立的空气质量监测站点的历史时段记录数据包括PM2.5监测数据和气象特征数据。
4.根据权利要求1所述的顾及时空关联性的城市空气质量时序预测方法,其特征在于:数据预处理包括异常值筛选、剔除、插值以及缺失值填补。
5.根据权利要求4所述的顾及时空关联性的城市空气质量时序预测方法,其特征在于:插值方法选择IDW反距离权重插值,通过插值获取在对应时刻空气质量监测站点位置的相应气象信息。
6.根据权利要求4所述的顾及时空关联性的城市空气质量时序预测方法,其特征在于:缺失值填补是利用随机森林算法对同一时刻的气象特征和PM2.5指数之间的相关性进行建模,根据气象特征同PM2.5数值之间的相关性模型,实现气象特征和PM2.5值之间的相互推测。
7.根据权利要求1所述的顾及时空关联性的城市空气质量时序预测方法,其特征在于:根据历史数据构建时空相关立方体,时空相关立方体是站点同站点之间在不同时刻的相关性强度,通过时空相关立方体自适应的提取出待预测时刻同该位置站点具有最强相关性的前K个重要的邻域站点;
时空相关立方体的具体步骤为:
首先利用历史数据构建设定时间段内不同时刻、不同站点之间的相关矩阵,矩阵每个值代表了站点两两之间的相关性强度;
其相关性强度计算公式为:
其中,Ks代表了不同站点在某一时刻的相关性强弱,Cov()代表着变量间的协方差,S(i,t)和S(j,t)代表了i站点和j站点在t时刻所对应的空气质量记录,代表了对应变量的标准差;
时空相关立方体通过自相关系数来衡量不同时刻不同空间站点之间的相关性强弱,从而得到设定时间段中所有时刻所有空气质量监测站点之间的相关性大小并以此来构建时空相关立方体;
通过时空相关立方体在实际预测中根据所预测时段的所属时刻及位置,来确定需要引入的辅助站点优先级,假定现在需要预测某一站点在未来该时刻的空气质量指数,可从时空相关立方体当中提取出该时刻所对应的站点之间的相关性;
根据邻域站点的相关性强弱对邻域站点进行排序,按照其重要性次序开始逐一添加进入随机森林算法进行训练,按照模型精度来选择最佳的特征个数K。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉墨锦创意科技有限公司,未经武汉墨锦创意科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010114790.1/1.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理