[发明专利]一种图像边缘识别方法有效

专利信息
申请号: 202010188138.4 申请日: 2020-04-20
公开(公告)号: CN111415363B 公开(公告)日: 2023-04-18
发明(设计)人: 易子川;简锐泓;梁正江;李林枫;郭沂宁;水玲玲;张崇富;迟锋;张智;彭保 申请(专利权)人: 电子科技大学中山学院
主分类号: G06T7/13 分类号: G06T7/13;G06T7/136
代理公司: 广东雅商律师事务所 44652 代理人: 杜海江
地址: 528400 *** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 图像 边缘 识别 方法
【说明书】:

发明公开了一种图像边缘识别方法,先创建画布,获得画布的二维上下文对象并渲染图像,获取即将进行边缘识别的图像的像素数据,对图像进行灰度化处理,灰度化处理后的图像经过重新渲染得出边缘识别的图像,然后获取边缘识别的图像的像素数据,用最大类间方差法对边缘识别的图像进行二值化处理,获取二值化处理后的图像的像素数据,某像素点的像素值与该像素点沿四个方向分布的像素值比对,判断该像素点的像素值是否与其四个方向的像素值相同,实现图像的边缘识别,节约图像定位的时间,采取自适应的方法获取目标的二值化阈值,更准确有效,采用改进的一阶梯度变换和局部梯度积分的方法,减少外界因素的影响,能够更准确的实现对外边界的定位。

技术领域

本发明涉及一种识别方法,特别是一种图像边缘识别方法。

背景技术

边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点,图像属性中的显著变化通常反映了属性的重要事件和变化,图像属性中的显著变化包括深度上的不连续、表面方向不连续、物质属性变化和场景照明变化,边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域,边缘是指其周围像素灰度急剧变化的像素的集合,它是图像最基本的特征,边缘存在于目标、背景和区域之间,所以,它是图像分割所依赖的最重要的依据。由于边缘是位置的标志,对灰度的变化不敏感,因此,边缘也是图像匹配的重要的特征。

现有技术中有许多用于边缘检测的方法,大致可分为两类:基于搜索的边缘检测方法和基于零交叉的边缘检测方法。

基于搜索的边缘检测方法首先计算边缘强度,通常用一阶导数表示,例如梯度模,然后,用计算结果估计边缘的局部方向,通常采用梯度的方向,并利用此方向找到局部梯度模的最大值;基于零交叉的边缘检测方法找到由图像得到的二阶导数的零交叉点来定位边缘,通常用拉普拉斯算子或非线性微分方程得到零交叉点。

然而,传统的图像边缘检测方法均存在抗噪性能不强和边缘不连续的弊端,导致检测效果不佳。。

发明内容

为了克服现有技术的不足,本发明提供一种图像边缘识别方法。

本发明解决其技术问题所采用的技术方案是:

一种图像边缘识别方法,包括如下步骤:

步骤S1,创建一个固定大小的画布,获得画布的二维上下文对象并渲染图像,得出即将进行边缘识别的图像;

步骤S2,获取即将进行边缘识别的图像的像素数据,并对即将进行边缘识别的图像进行灰度化处理,得到灰度化处理后的图像;

步骤S3,灰度化处理后的图像经过重新渲染得出边缘识别的图像,然后获取边缘识别的图像的像素数据;

步骤S4,用最大类间方差法对边缘识别的图像进行二值化处理,得到二值化处理后的图像;步骤S5,获取二值化处理后的图像的像素数据,某像素点的像素值与该像素点沿四个方向分布的像素值比对,判断该像素点的像素值是否与其四个方向的像素值相同,从而实现图像的边缘识别。

在步骤S2中,获取即将进行边缘识别的图像的像素数据后,为了方便、快捷地提取其他特征量,需要对即将进行边缘识别的图像进行灰度化处理,得到灰度化处理后的图像,获取灰度化处理后的图像的灰度值,灰度值经过量化得出灰度值的级别,即将进行边缘识别的图像是彩色的,灰度化处理后的图像是黑白的,灰度化处理的过程中用到灰度处理加权平均法公式,其中灰度处理加权平均法公式如下:

Gray=rValue*0.299+gValue*0.587+bValue*0.114,

其中Gray、rValue、gValue、bValue分别代表单位像素点灰度值、R分量红色分量值、G分量绿色分量值、B分量蓝色分量值。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学中山学院,未经电子科技大学中山学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010188138.4/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top