[发明专利]一种基于Fiala刷子轮胎模型的多点预瞄LQR横向控制方法有效
申请号: | 202010214423.9 | 申请日: | 2020-03-24 |
公开(公告)号: | CN111399380B | 公开(公告)日: | 2021-10-22 |
发明(设计)人: | 秦兆博;胡云卿;尚敬;刘海涛;秦洪懋;胡满江;陈亮;丁荣军;秦晓辉;徐彪;谢国涛;王晓伟;边有钢;陈鑫 | 申请(专利权)人: | 湖南大学;中车株洲电力机车研究所有限公司 |
主分类号: | G05B13/04 | 分类号: | G05B13/04 |
代理公司: | 广州容大知识产权代理事务所(普通合伙) 44326 | 代理人: | 刘新年 |
地址: | 410082 湖*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 fiala 刷子 轮胎 模型 多点 lqr 横向 控制 方法 | ||
本发明公开了一种基于Fiala刷子轮胎模型的多点预瞄LQR横向控制方法,该方法包括:步骤1,建立车辆二自由度动力学模型及基于车辆打击中心的跟踪误差模型;步骤2,建立系统的状态空间方程;步骤3,将路径曲率作为扰动量与系统的状态向量合并构造一个增广的LQR控制问题;步骤4,通过求解增广LQR系统的Riccati方程得到最优的前馈控制量和反馈控制量;步骤5,利用得到的最优控制量——前轮侧偏力。本发明不仅能够在有限时域内通过LQR控制器预瞄多个路点的曲率信息,而且还可以在车辆具有较大横向加速度的情况下通过前轮转角约束前轮侧偏力,使车辆可以保持良好的横向稳定性和路径跟踪精度,避免了在极限工况下车辆因轮胎力饱和而出现失稳的状况。
技术领域
本发明智能车辆横向控制技术领域,特别是涉及一种基于Fiala刷子轮胎模型的多点预瞄LQR横向控制方法。
背景技术
近年来,汽车的保有量不断上升,交通技术能力不断提高,对汽车的智能驾驶驾驶技术的需求也在增加,基于现实的需求,开展了对智能车辆运动控制相关技术的研究及探索。智能车辆运动控制技术根据控制目标的不同分为横向控制和纵向控制两类。其中,横向控制技术是实现智能车辆自主驾驶的关键技术之一。智能车辆的横向控制是在保证行驶安全性和舒适性的前提下,通过控制车辆的转向系统,使得车辆能沿着期望路径行驶。
现有的一些横向控制算法,如PID、模型预测控制、最优控制等控制算法基本都在提升路径跟踪的误差精度,但是在真实的道路状况下,车辆常常会因为一些突发情况偏离期望路径,并且当车速过高时,车轮侧偏力会接近饱和以至于车辆发生侧滑运动,车辆容易发生失稳现象。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种基于Fiala刷子轮胎模型的多点预瞄LQR横向控制方法来克服现有技术的上述缺陷,本发明不仅能够在有限时域内通过LQR控制器预瞄多个路点的曲率信息,而且还可以在车辆具有较大横向加速度的情况下通过前轮转角约束前轮侧偏力,使车辆可以保持良好的横向稳定性和路径跟踪精度,避免了在极限工况下车辆因轮胎力饱和而出现失稳的状况。
为实现上述目的,本发明提供了如下技术方案:一种基于Fiala刷子轮胎模型的多点预瞄LQR横向控制方法,其特征在于:包括如下步骤:
步骤1,建立车辆二自由度动力学模型及基于车辆打击中心的跟踪误差模型;
步骤2,建立系统的状态方程;
步骤3,将路径曲率作为扰动量与系统的状态向量合并构造一个增广的LQR控制问题;
步骤4,通过求解增广LQR系统的Riccati方程得到最优的前馈控制量和反馈控制量;
步骤5,根据步骤4中得到的最优的前馈控制量和反馈控制量获得前轮侧偏力,基于获得的前轮侧偏力前提下根据Fiala刷子轮胎模型得到前轮侧偏角,进而得到前轮转角,然后根据获得的前轮转角对车辆进行横向控制。
作为本发明的进一步改进,所述步骤1中的车辆二自由度动力学模型为:
式中,Ff为前轮侧偏力,Fr为后轮侧偏力,m为车辆的质量,Uy和Ux分别为横向速度和纵向速度,r为车辆横摆角速度,a和b分别为前轴、后轴与车辆质心的距离,Iz为车辆转向惯性矩。
作为本发明的进一步改进,所述步骤1中的基于车辆打击中心的跟踪误差模型为:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于湖南大学;中车株洲电力机车研究所有限公司,未经湖南大学;中车株洲电力机车研究所有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010214423.9/2.html,转载请声明来源钻瓜专利网。