[发明专利]一种多级电网嵌套分解协调有功无功联合调度方法有效
申请号: | 202010236368.3 | 申请日: | 2020-03-30 |
公开(公告)号: | CN111416395B | 公开(公告)日: | 2021-08-17 |
发明(设计)人: | 吴文传;孙宏斌;蔺晨晖;王彬;郭庆来 | 申请(专利权)人: | 清华大学 |
主分类号: | H02J3/48 | 分类号: | H02J3/48;H02J3/50;G06Q10/04;G06Q10/06;G06Q50/06 |
代理公司: | 北京清亦华知识产权代理事务所(普通合伙) 11201 | 代理人: | 罗文群 |
地址: | 100084*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 多级 电网 嵌套 分解 协调 有功 无功 联合 调度 方法 | ||
1.一种多级电网嵌套分解协调有功无功联合调度方法,其特征在于该方法包括以下步骤:
(1)建立一个多级电网协同的有功无功联合调度优化模型:
(1.1)设定一个多级电网中共有M个层级电网,层级电网m中共有N(m)个区域电网,建立多级电网协同的有功无功联合调度优化模型的优化目标函数,该优化目标函数为各层级各区域电网的发电成本的总和的最小化,对于层级m中编号n的区域电网,发电成本的表达式为:
上式中,G为电网中发电机组的编号集合,PiG为发电机组i的发电有功功率,Ci(PiG)为发电机组i的发电成本函数,将该发电成本函数表示成如下的二次函数:
Ci(PiG)=a0,i+a1,iPiG+a2,i(PiG)2
上式中,a0,i、a1,i、a2,i分别为发电机组i的发电成本常数项、一次项和二次项系数,从电网调度中心获取;
(1.2)建立多级电网协同的有功无功联合调度优化模型的约束条件如下:对于层级m中编号n的区域电网,区分以下两种情况:
(1.2.1)若层级m中编号n的区域电网是环状电网,则约束条件包括:
(1.2.1.1)支路潮流方程约束:
上式中,Pij与Qij分别为电网中节点i流向节点j的有功功率潮流与无功功率潮流,为待求变量,Pji与Qji分别为节点j流向节点i的有功功率潮流与无功功率潮流,为待求变量,τij为节点i与节点j之间的支路ij的变压器变比,由变压器出厂铭牌获取,与分别为支路ij的电导与电纳,从电网调度中心获取,为支路ij的充电电纳,从电网调度中心获取,Vi与Vj分别为节点i与节点j的电压幅值,为待求变量,θi与θj分别为节点i与节点j的电压相角,为待求变量,φij为支路ij的变压器移相相角,由变压器出厂铭牌获取,L为电网中支路的编号集合;
(1.2.1.2)节点注入平衡约束:
上式中,Gi与Di分别为与节点i连接的发电机组与负荷的编号集合,与分别为发电机组y的发电有功功率与无功功率,为待求变量,与分别为负荷z的有功功率需求与无功功率需求,从电网调度中心获取,与分别为节点i的并联电导与并联电纳,从电网调度中心获取,B为系统中节点的编号集合;
(1.2.1.3)电压安全约束:
上式中,与
(1.2.1.4)机组出力约束:
上式中,与
(1.2.1.5)线路容量约束:
上式中,为支路ij的视在功率容量,从电网调度中心获取;
(1.2.2)若层级m中编号n的区域电网是辐射状电网,则约束条件包括:
(1.2.2.1)松弛的支路潮流方程约束:
上式中,Pij与Qij分别为节点i流向节点j的有功功率潮流与无功功率潮流,为待求变量,vi为节点i的电压幅值的平方,为待求变量,lij为支路ij的电流幅值的平方,为待求变量,L为系统中支路的编号集合;
(1.2.2.2)节点注入平衡约束:
上式中,Gi与Di分别为与节点i连接的发电机组与负荷的编号集合,与分别为发电机组y的发电有功功率与无功功率,为待求变量,Pji与Qji分别为节点j流向节点i的有功功率潮流与无功功率潮流,为待求变量,lji为支路ji的电流幅值的平方,为待求变量,与分别为负荷z的有功功率与无功功率需求,从电网调度中心获取,与分别为节点i的并联电导与并联电纳,从电网调度中心获取,rji与xji分别为支路ji的电阻与电抗,从电网调度中心获取,B为系统中节点的编号集合;
(1.2.2.3)支路电压降落约束:
上式中,vj为节点j的电压幅值的平方,为待求变量,rij与xij分别为支路ij的电阻与电抗,从电网调度中心获取;
(1.2.2.4)电压安全约束:
上式中,与
(1.2.2.5)机组出力约束:
上式中,与
(1.2.2.6)线路容量约束:
上式中,为支路ij的电流幅值的平方的上限,从电网调度中心获取;
(1.3)将步骤(1.1)的优化目标函数和步骤(1.2)的约束条件组成一个多级电网协同的有功无功联合调度优化模型,表达如下:
满足:
上式中,m为多级电网中的层级编号,n为同一层级中的区域电网的编号,xm,n为层级m中编号n的区域电网的内部优化变量,若该区域电网是环状电网,则xm,n包括Pij、Qij、Pji、Qji、Vi、Vj、θi、θj、PiG和QiG,如果该区域电网是辐射状电网,则xm,n包括Pij、Qij、vi、lij、PiG和QiG;um,n为层级m中编号n的区域电网与上级电网耦合的优化变量,如果该区域电网是环状电网,则um,n包括Vi2、PiG和QiG,如果该区域电网是辐射状电网,则um,n包括vi、PiG和QiG;lm,n为层级m中编号n的区域电网与下级电网耦合的优化变量,如果该区域电网是环状电网,则lm,n包括Vi2、-PiG和-QiG,如果该区域电网是辐射状电网,则lm,n包括vi、-PiG和fm,n(xm,n)为层级m中区域电网n的有功无功联合调度优化目标,与步骤(1.1)中的相对应,Gm,n(xm,n,um,n,lm,n)≤0为层级m中区域电网n的有功无功联合调度的约束条件,若层级m中区域电网n为环状电网,则Gm,n(xm,n,um,n,lm,n)≤0为步骤(1.2.1.1)-步骤(1.2.1.5)的约束条件,若层级m中区域电网n为辐射状电网,则Gm,n(xm,n,um,n,lm,n)≤0为步骤(1.2.2.1)-步骤(1.2.2.6)的约束条件,M为多级电网的总级数,N(m)为层级m中的电网区域总数,U(m,n)为与层级m中区域电网n相连接的上一级区域电网所在的层级m-1中的编号,约束um,n=Im,nlm-1,U(m,n)表示相连接的上层级电网和下层级电网的边界耦合约束,Im,n为层级m中区域电网n与上级电网的边界耦合约束的映射矩阵,映射矩阵Im,n的各行中,向量um,n中的每个元素在lm-1,U(m,n)中对应的行在Im,n中为单位矩阵,在Im,n中没有对应的其他行为0;
(2)各级电网之间采用嵌套分解协调的方法,求解步骤(1)的多级电网协同的有功无功联合调度优化模型,得到多级电网嵌套分解协调有功无功联合调度的调度方法,包括以下步骤:
(2.1)取电网中层级编号m=1,区域电网编号n=1;
(2.2)采用分解协调方法,计算层级m中编号为n的区域电网与该区域电网下属的各区域电网协同的有功无功联合调度最优解,过程如下:
初始化层级m中编号为n的区域电网与相邻下级区域电网的迭代次数km,n=1,层级m中编号为n的区域电网求解内部有功无功联合调度模型,对m进行判断:
(2.2.1)如果m=1,则内部有功无功联合调度模型为:
s.t.Gm,n(xm,n,um,n,lm,n)≤0
求解该模型,得到最优解,将最优解记作和并将最优解处约束Gm,n(xm,n,um,n,lm,n)≤0的对偶乘子记作
(2.2.2)如果m≠1,则内部有功无功联合调度模型为:
s.t.Gm,n(xm,n,um,n,lm,n)≤0
求解该模型,得到最优解,将该最优解记作和并将最优解处约束Gm,n(xm,n,um,n,lm,n)≤0的对偶乘子记作
(2.3)对m进行判断:如果m≠M,取n为L(m,n)中的第一项,其中L(m,n)为层级m中编号为n的区域电网在层级电网m+1中所连接的区域电网的编号集合,取m等于m+1,返回到步骤(2.2);如果m=M,进行步骤(2.4);
(2.4)计算层级m中编号为n的区域电网的最优割平面和近似投影函数,包括以下步骤:
(2.4.1)对m进行判断:
如果m=M,则定义为xm,n,定义为fm,n(xm,n),定义为Gm,n(xm,n,um,n,lm,n),定义为
如果m≠M,则定义为定义为定义为定义为
(2.4.2)根据步骤(2.4.1),得到层级m中编号为n的区域电网的最优割平面为:
近似投影函数为:
上式中,项可通过下式计算:
上式中,diag()为对角矩阵构造函数;
(2.5)对n进行判断:如果n不是L(m-1,U(m,n))中的最后一项,则取n为L(m-1,U(m,n))中n的下一项,返回步骤(2.2);如果n是L(m-1,U(m,n))中的最后一项,取n为U(m,n),m为m-1,进行步骤(2.6);
(2.6)求解层级m中编号为n的区域电网内部考虑下级投影函数的有功无功联合调度模型,包括以下步骤:
对m进行判断:
(2.6.1)如果m=1,内部考虑下级投影函数的有功无功联合调度模型为:
s.t.Gm,n(xm,n,um,n,lm,n)≤0
上式中,为辅助变量,物理含义为层级m+1中编号为n*的区域电网的目标,将层级m中编号为n的电网的迭代次数km,n增加1,上式计算出的最优解记作最优解处约束Gm,n(xm,n,um,n,lm,n)≤0的对偶乘子记作约束的对偶乘子记作约束的对偶乘子记作
(2.6.2)如果m≠1,内部考虑下级投影函数的有功无功联合调度模型为:
s.t.Gm,n(xm,n,um,n,lm,n)≤0
上式中,为辅助变量,物理含义为层级m+1中编号为n*的区域电网的目标,将层级m中编号为n的电网的迭代次数km,n增加1,上式计算出的最优解记作与最优解处约束Gm,n(xm,n,um,n,lm,n)≤0的对偶乘子记作约束的对偶乘子记作约束的对偶乘子记作
(2.7)对层级m中编号为n的区域电网的计算进行收敛判断,设定收敛条件为如果不满足收敛条件,则返回到步骤(2.3);如果满足收敛条件,且m≠1,则返回步骤(2.4);如果满足收敛条件,且m=1,则进行步骤(3);
(3)根据步骤(2.2.2)、(2.6.1)和(2.6.2)中计算得到的最优解中所包含的每台发电机的有功功率PiG与无功功率QiG,对多级电网进行调度,实现多级电网嵌套分解协调有功无功联合调度。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010236368.3/1.html,转载请声明来源钻瓜专利网。