[发明专利]一种用于门禁设备的人脸识别系统在审
申请号: | 202010270812.3 | 申请日: | 2020-04-08 |
公开(公告)号: | CN111611849A | 公开(公告)日: | 2020-09-01 |
发明(设计)人: | 曾林彬 | 申请(专利权)人: | 广东工业大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04;G06N3/08;G07C9/37;G07C9/38 |
代理公司: | 广州粤高专利商标代理有限公司 44102 | 代理人: | 林丽明 |
地址: | 510060 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 用于 门禁 设备 识别 系统 | ||
1.一种用于门禁设备的人脸识别系统,其特征在于,包括主控模块、监测模块、人脸识别模块、通信模块、云服务器和终端;所述监测模块与所述主控模块双向连接,所述主控模块的输出端与所述云服务器的输入端IP连接;所述云服务器驱动人脸识别模块进行人脸检测与识别,所述人脸识别模块搭建有深度学习卷积神经网络模型;所述人脸识别模块的数据信息传输至所述主控模块,所述主控模块通过所述通信模块与所述终端进行数据透传。
2.根据权利要求1所述的一种用于门禁设备的人脸识别系统,其特征在于,所述主控模块的硬件核心为树莓派主控模块。
3.根据权利要求2所述的一种用于门禁设备的人脸识别系统,其特征在于,所述监测模块包括门铃键和摄像头;门铃键被触发时,其电信号传送至树莓派,所述树莓派驱动摄像头进行图片采集,并将图片信息传输至云服务器。
4.根据权利要求1所述的一种用于门禁设备的人脸识别系统,其特征在于,所述人脸识别模块由深度学习卷积神经网络搭建的人脸检测神经网络、人脸识别神经网络和人脸属性识别神经网络构成;所述云服务器将采集的图片输入人脸检测神经网络进行画框、剪裁,然后将图像大小转换为128×128(W×H)大小,使用中值滤波和差分高斯滤波算法对图像进行去噪,滤波处理后,对图像进行伽马变化,处理后的图片信息分别输入人脸识别神经网络和人脸属性识别神经网络,得出相应数据信息。
5.根据权利要求1所述的一种用于门禁设备的人脸识别系统,其特征在于,所述通信模块为蓝牙通信模块。
6.根据权利要求4所述的一种用于门禁设备的人脸识别系统,其特征在于,所述人脸检测神经网络包括Proposal Network子神经网络、Refine Network子神经网络和OutputNetwork子神经网络;Proposal Network子神经网络在图片中获取脸部候选框与边框回归变量,脸部候选框通过边框回归变量进行校正,合并高度重合的候选框,并作为RefineNetwork子神经网络的输入;Refine Network子神经网络拒绝未重合的脸部候选框,脸部候选框通过边框回归变量进行校正,合并高度重合的候选框,并输入到Output Network子神经网络;Output Network子神经网络识别目标的区域,输出bounding box regression坐标和人脸关键点坐标。
7.根据权利要求6所述的一种用于门禁设备的人脸识别系统,其特征在于,人脸识别神经网络选取双输入、双输出、权值共享的卷积神经网络作为人脸识别训练模型,将人脸检测神经网络输出的bounding box regression坐标对原图像剪裁得到的人脸图像进行人脸特征信息提取得到2个78维人脸特征向量,之后使用欧氏距离计算人脸相似度。
8.根据权利要求7所述的一种用于门禁设备的人脸识别系统,其特征在于,所述卷积神经网络利用以1x1,3x3,5x5的convolution卷积层和2x2的Max pooling池化层堆叠在一起,搭建成具有首尾对称性的神经网络。
9.根据权利要求6所述的一种用于门禁设备的人脸识别系统,其特征在于,人脸属性识别神经网络选取单输入、双分类的多任务卷积神经网络模型,将人脸检测神经网络输出的bounding box regression坐标对原图像剪裁得到的人脸图像经过卷积处理,提取人脸卷积后数据的主要特征向量,经过再处理输出年龄分类和性别分类的概率。
10.根据权利要求9所述的一种用于门禁设备的人脸识别系统,其特征在于,在多任务卷积神经网络模型中,将人脸检测神经网络输出的bounding box regression坐标对原图像剪裁得到的人脸图像分别经过一个卷积核大小为5×5的卷积层卷积层、一个3×3和一个1×1卷积层后,使用1×3、3×1的卷积模块再进行卷积,然后将卷积后的人脸特征向量分别输入至3层卷积核大小分别为1x1,3x1和1x3的卷积层和4层卷积核大小分别为1x1,5x5,3x3和3x3的卷积层,之后进行PCA降维算法,用来提取人脸卷积后数据的主要特征向量,最后经过再经过4层连接层分类分别输出年龄分类和性别分类的概率。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东工业大学,未经广东工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010270812.3/1.html,转载请声明来源钻瓜专利网。