[发明专利]训练预测模型的方法、装置、计算机设备及可读存储介质在审
申请号: | 202010281332.7 | 申请日: | 2020-04-10 |
公开(公告)号: | CN111524015A | 公开(公告)日: | 2020-08-11 |
发明(设计)人: | 唐永鹏;刘硕凌;程宁;韩雷 | 申请(专利权)人: | 易方达基金管理有限公司 |
主分类号: | G06Q40/06 | 分类号: | G06Q40/06;G06K9/62;G06N20/00 |
代理公司: | 北京英特普罗知识产权代理有限公司 11015 | 代理人: | 程超 |
地址: | 519000 广东省珠海市横琴新*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 训练 预测 模型 方法 装置 计算机 设备 可读 存储 介质 | ||
1.一种训练预测模型的方法,其特征在于,所述方法包括:
获取用于训练预测模型的正例样本集和负例样本集;其中,所述正例样本集包括:债券违约企业样本、所述负例样本集包括:债券未违约企业样本;
基于所述正例样本集和负例样本集,利用K折交叉验证算法确定出K组训练集和验证集,以使用每组中的训练集进行模型训练,并使用对应组中的验证集对训练出的预测模型进行验证;
在使用一组中的训练集进行模型训练的过程中,利用EasyEnsemble算法将所述训练集划分为N个训练子集,并分别使用每个训练子集进行模型训练,以训练出N个预测模型;
在使用一组中的验证集对训练出的预测模型进行验证的过程中,使用所述验证集依次对训练出的各个预测模型进行验证,并将验证通过的预测模型用于预测企业是否存在债券违约风险。
2.根据权利要求1所述的训练预测模型的方法,其特征在于,所述基于所述正例样本集和负例样本集,利用K折交叉验证算法确定出K组训练集和验证集,具体包括:
将所述正例样本集均分为K个正例样本子集,并将所述负例样本集均分为K个负例样本子集;
不重复的选取一个正例样本子集与一个负例样本子集,并将选取的正例样本子集与负例样本子集合并为参考样本集,从而形成K个参考样本集;
依次将每个参考样本集作为验证集,并将剩余的K-1个参考样本集作为训练集,以确定出K组训练集和验证集。
3.根据权利要求1所述的训练预测模型的方法,其特征在于,所述在使用一组中的训练集进行模型训练的过程中,利用EasyEnsemble算法将所述训练集划分为N个训练子集,具体包括:
识别出所述训练集中的债券违约企业样本和债券未违约企业样本;
将所述训练集中的所有债券未违约企业样本均分为N个互斥训练子集,并在每个训练子集中添加所述训练集中的所有债券违约企业样本。
4.根据权利要求3所述的训练预测模型的方法,其特征在于,所述训练子集的个数其中,P为所述训练集中债券未违约企业样本的总数量,Q为所述训练集中债券违约企业样本的总数量。
5.根据权利要求1所述的训练预测模型的方法,其特征在于,所述方法还包括:
获取待预测企业的特征参数,并将所述特征参数输入到各个验证通过的预测模型中,以得到各个预测模型的预测结果;
根据所有预测模型的预测结果,按照预设算法,计算出所述待预测企业的最终预测结果;
基于所述最终预测结果判断所述待预测企业是否存在债券违约风险。
6.一种训练预测模型的装置,其特征在于,所述装置包括:
获取模块,用于获取用于训练预测模型的正例样本集和负例样本集;其中,所述正例样本集包括:债券违约企业样本、所述负例样本集包括:债券未违约企业样本;
确定模块,用于基于所述正例样本集和负例样本集,利用K折交叉验证算法确定出K组训练集和验证集,以使用每组中的训练集进行模型训练,并使用对应组中的验证集对训练出的预测模型进行验证;
训练模块,用于在使用一组中的训练集进行模型训练的过程中,利用EasyEnsemble算法将所述训练集划分为N个训练子集,并分别使用每个训练子集进行模型训练,以训练出N个预测模型;
验证模块,用于在使用一组中的验证集对训练出的预测模型进行验证的过程中,使用所述验证集依次对训练出的各个预测模型进行验证,并将验证通过的预测模型用于预测企业是否存在债券违约风险。
7.根据权利要求6所述的训练预测模型的装置,其特征在于,所述确定模块具体用于:
将所述正例样本集均分为K个正例样本子集,并将所述负例样本集均分为K个负例样本子集;
不重复的选取一个正例样本子集与一个负例样本子集,并将选取的正例样本子集与负例样本子集合并为参考样本集,从而形成K个参考样本集;
依次将每个参考样本集作为验证集,并将剩余的K-1个参考样本集作为训练集,以确定出K组训练集和验证集。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于易方达基金管理有限公司,未经易方达基金管理有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010281332.7/1.html,转载请声明来源钻瓜专利网。