[发明专利]一种基于频域多点峭度的滚动轴承故障诊断方法有效
申请号: | 202010365366.4 | 申请日: | 2020-04-30 |
公开(公告)号: | CN111504645B | 公开(公告)日: | 2021-03-02 |
发明(设计)人: | 王琇峰;文俊;和丹;金帅普 | 申请(专利权)人: | 西安交通大学 |
主分类号: | G01M13/045 | 分类号: | G01M13/045;G06K9/00 |
代理公司: | 西安智大知识产权代理事务所 61215 | 代理人: | 贺建斌 |
地址: | 710049 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 多点 滚动轴承 故障诊断 方法 | ||
一种基于频域多点峭度的滚动轴承故障诊断方法,先采集正常轴承、外圈故障轴承、内圈故障轴承原始振动信号,对原始振动信号用形态学滤波进行预处理;然后对预处理后的原始振动信号进行角度域重采样,作角度域信号的包络谱;再输入轴承故障阶次,用频域多点峭度的方法构造目标向量,对角度域信号的包络谱进行目标阶次信号的提取;然后计算目标阶次信号的频域多点峭度,再计算前六阶目标阶次幅值信号的均方根值,最后根据频域多点峭度和均方根比值两个指标判断轴承故障,实现轴承故障的识别和定位;本发明相比传统指标更加敏感且准确,可以在强背景噪声下和故障早期准确发现故障,避免不必要的事故发生。
技术领域
本发明属于轴承故障诊断技术领域,具体涉及一种基于频域多点峭度的滚动轴承故障诊断方法。
背景技术
轴承是大型机械设备中的重要组成部分,其健康状况直接关系到整个设备的正常运转,对其运行状态的进行监测与诊断具有重要意义。
传统的轴承故障诊断方法,需要从频谱中寻找故障特征频率,而对于一些环境比较恶劣,噪声大或者早期故障,其故障特征频率往往很难被发现,从而降低了故障诊断的准确性。另一方面,对于一些变速箱生产厂家来说,为保证出厂时质量达标,下线检测是必不可少的一道工序,由于流水线产品数量庞大,测试人员现场测试振动不仅耗时耗力,准确性也会显得不足。
针对轴承故障的定性分析问题,实际采集的实验信号和工程信号由于存在很强的噪声,很难从时域上分析出轴承故障信号的冲击。另外,对于非平稳信号来说,以快速傅里叶变换(FFT)为核心的传统的频谱分析方法会出现“频谱”模糊现象;不能实现轴承故障特征的自适应提取与识别。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供了一种基于频域多点峭度的滚动轴承故障诊断方法,能够实现轴承故障特征的自适应提取与识别。
为了达到上述目的,本发明所采用的技术方案是:
一种基于频域多点峭度的滚动轴承故障诊断方法,包括以下步骤:
步骤1:通过振动加速度传感器分别采集正常轴承、外圈故障轴承、内圈故障轴承原始振动信号,然后对原始振动信号用形态学滤波进行预处理,设f(n)为原始振动信号,g(m)为一维结构元素,选择长度M=5、幅值H=1的三角形结构元素,则g=(0,0.5,1,0.5,0);定义域分别为F=(0,1,…,N-1)和G=(0,1,…,M-1),且N>>M,则f(n)关于g(m)的腐蚀、膨胀、开算子、闭算子分别定义为:
(fΘg)(n)=min[f(n+m)-g(m)]
选择开闭-闭开组合形态算子CMF作为形态滤波算子,表达式如下:
式中:f—原始振动信号;g—三角形结构元素;
步骤2:对预处理后的原始振动信号进行角度域重采样,作角度域信号的包络谱,最大分析阶次计算公式为:
af=fs/(fn/60)
式中:fs—采样频率(Hz);fn—转速(r/min);af—最大分析阶次;
步骤3:输入轴承故障阶次,用频域多点峭度的方法构造目标向量tn,对角度域信号的包络谱进行目标阶次信号的提取;
目标向量的脉冲间隔由轴承外圈、内圈、保持架、滚动体对应故障阶次确定,根据输入的轴承故障阶次构造目标向量tn,设置一个自适应的阶次搜索方法,使输入的阶次正好在包络谱中突出的谱线上或附近;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010365366.4/2.html,转载请声明来源钻瓜专利网。