[发明专利]一种基于全卷积神经网络的水尺水位线检测及有效性识别方法有效
申请号: | 202010386698.0 | 申请日: | 2020-05-09 |
公开(公告)号: | CN111598098B | 公开(公告)日: | 2022-07-29 |
发明(设计)人: | 张振;周扬;王慧斌;张丽丽;汪崎宇;李嘉辉;沈淏旸 | 申请(专利权)人: | 河海大学 |
主分类号: | G06V10/26 | 分类号: | G06V10/26;G06V10/774;G06V10/764;G06V10/80;G06V10/82;G06K9/62;G06N3/04;G06N3/08;G06T7/00;G06T7/136 |
代理公司: | 南京苏高专利商标事务所(普通合伙) 32204 | 代理人: | 王安琪 |
地址: | 210098 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 卷积 神经网络 水尺 水位 检测 有效性 识别 方法 | ||
本发明公开了一种基于全卷积神经网络的水尺水位线检测及有效性识别方法,包括如下步骤:S1、获取水尺图像并进行人工标注,将水尺、水草和水体用不同的类别区分,得到标签图;S2、设计全卷积神经网络结构,进行网络训练;S3、利用训练得到的全卷积神经网络对待测图像进行语义分割,实现像素级的语义标记;S4、在语义分割图像中检测水尺水位线及识别有效性。本发明检测精度高,鲁棒性强,操作简单。
技术领域
本发明涉及计算机视觉技术领域,尤其是一种基于全卷积神经网络的水尺水位线检测及有效性识别方法。
背景技术
水位是河流湖库的基本水文要素之一,是反映水体、水流变化的重要指标,水位数据是防汛抗旱、灌溉、航运和水利设施的建设和管理的基本依据,因此,及时可靠的水位测量对于水资源管理规划和可持续发展具有重要意义。水尺通过读数记录水位的高度,是一种最直观和简单的测量工具;然而传统水尺测量需要人工定时观测,自动化程度低,人员劳动强度大。现有的自动水位计主要包括浮子式、压力式、超声波式及雷达式等,但普遍存在设备及安装成本高,测量精度易受环境温度、泥沙含量及现场控制结构的影响,需要工作人员定期维护等缺点。
目前国内许多重要的水位观测点均设有视频监控系统并配有标准水尺,为基于图像的水尺水位检测提供了有利条件。图像法利用图像传感器代替人眼获取水尺图像,通过图像处理技术检测水位线对应的读数,从而自动获取水位信息。然而在野外实际应用中,由于水尺和拍摄设备之间的距离较长,造成图像分辨率较低和背景干扰噪声较多,同时野外环境光照强度的变化对成像效果的影响较大,晴天时水面耀光、水尺倒影强烈,阴雨天气时水尺和水面的灰度值接近,导致常规基于灰度、边缘信息的图像处理技术将很难从中提取出水位线,或者检测误差较大,对于水尺有水草遮挡等测量结果的有效性也无法进行识别。
发明内容
本发明所要解决的技术问题在于,提供一种基于全卷积神经网络的水尺水位线检测及有效性识别方法,检测精度高,鲁棒性强,操作简单。
为解决上述技术问题,本发明提供一种基于全卷积神经网络的水尺水位线检测及有效性识别方法,包括如下步骤:
S1、获取水尺图像并进行人工标注,将水尺、水草和水体用不同的类别区分,得到标签图;
S2、设计全卷积神经网络结构,进行网络训练;
S3、利用训练得到的全卷积神经网络对待测图像进行语义分割,实现像素级的语义标记;
S4、在语义分割图像中检测水尺水位线及识别有效性。
优选的,步骤S1中,所述的获取水尺图像具体包括以下步骤:
S1.1:选取不同天气、光照和水流条件下24位的实际水尺监控图像数据建立图像样本集,按照训练样本集,验证样本集=8:2的方式进行划分;
S1.2:处理实际水尺监控图像生成24位的正射水尺图像,长为H像素、宽为W像素。
优选的,步骤S1中,所述的将水尺、水草和水体用不同的类别区分,得到标签图是对24位的正射水尺图像进行手工标注,生成的8位PNG格式的标签图,其中水体部分的像素值为0,水尺部分的像素值为1,水草部分的像素值为2,将目标物体和背景分离,使得正射水尺图像中的每个像素点都有明确的类别。
优选的,步骤S2中,所述的全卷积神经网络结构具体为:
S2.1:将VGG-19网络作为待搭建全卷积神经网络的基础网络;
S2.2:将待搭建全卷积神经网络中的全连接层FC-4096、FC-4096和FC-1000分别转换为卷积层,卷积核的大小(宽,长,通道数)分别为(7,7,4096)、(1,1,4096)、(1,1,1000);
S2.3:网络的具体结构如下所示:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河海大学,未经河海大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010386698.0/2.html,转载请声明来源钻瓜专利网。