[发明专利]一种电容触摸屏设备的机械控制装置及方法在审
申请号: | 202010388019.3 | 申请日: | 2020-05-09 |
公开(公告)号: | CN111624977A | 公开(公告)日: | 2020-09-04 |
发明(设计)人: | 张研;盛任;王艳凤;付威旺;郑振祥 | 申请(专利权)人: | 黄河水利职业技术学院 |
主分类号: | G05B23/02 | 分类号: | G05B23/02 |
代理公司: | 北京国坤专利代理事务所(普通合伙) 11491 | 代理人: | 赵红霞 |
地址: | 475004*** | 国省代码: | 河南;41 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 电容 触摸屏 设备 机械 控制 装置 方法 | ||
1.一种电容触摸屏设备的机械控制方法,其特征在于,所述电容触摸屏设备的机械控制方法,包括以下步骤:
步骤一,供电模块为电容触摸屏设备的机械控制装置供电;
步骤二,触控模块通过触控屏进行触控操作,控制程序加载模块通过加载程序加载电容触摸屏设备的机械控制程序,控制参数配置模块通过配置程序配置电容触摸屏设备的机械控制参数;
步骤三,配置电容触摸屏设备的机械控制参数完成后,中央控制模块控制机械数据处理模块通过数据处理程序对机械数据进行处理,控制机械数据分析模块通过分析程序对机械数据进行分析;
步骤四,根据机械数据分析的结果,中央控制模块控制机械故障诊断模块通过诊断设备对电容触摸屏设备的机械控制装置故障进行诊断;
步骤五,故障诊断完成后,中央控制模块控制云存储模块通过云服务器对机械数据进行存储;
步骤六,中央控制模块控制显示模块通过显示器显示控制程序、控制参数、机械数据;
所述步骤四中,机械故障诊断模块诊断方法如下:
1)通过诊断设备以机械设备各种运行状态下的机械信号作为数据集合,对获取到的机械信号进行标准化预处理;
2)建立用于机械信号生成的生成对抗复合神经网络模型,该复合神经网络模型包含生成器以及带有辅助分类器的判别器两个网络子结构;
3)对步骤2)建立的复合神经网络模型,结合Wasserstein距离以及梯度惩罚方法,进行对抗式地训练并更新生成器和带有辅助分类器的判别器的网络参数,从而使生成器实现使用高斯噪声生成带标签数据的功能,进而获得带有运行状态标签的机械信号;
4)建立使用机械信号对机械设备运行状态进行分类识别的神经网络模型,模型输入数据为小于总数据量5%的真实机械信号以及由步骤3的生成器生成的带运行状态标签的机械信号,模型输出为每一条数据所对应的运行状态的概率值;
5)对步骤4)所建立的卷积神经网络状态分类模型,使用Dropout以及Batchnormalization参数正则化方法防止训练过拟合及稳定训练过程,从而使网络更快速更稳定完成状态分类工作;
6)结合步骤3)所设计的生成对抗复合神经网络模型以及步骤5)所设计的卷积神经网络状态分类模型,使用小于总数据量5%的真实机械信号训练两个网络,从而使生成对抗复合神经网络模型能够生成和真实机械信号具有相同分布的数据,并使卷积神经网络状态分类模型能够获得95%以上的状态分类正确率,最终实现小样本数据下的对机械设备的智能故障诊断。
2.如权利要求1所述的电容触摸屏设备的机械控制方法,其特征在于,所述步骤二中,控制程序加载模块通过加载程序加载电容触摸屏设备的机械控制程序的过程为:
初始化全局电容触摸屏设备的机械控制服务器配置,配置完成后,电容触摸屏设备的机械控制服务器加载含有机械控制程序的文件,并且使用默认配置;
加载完成后,电容触摸屏设备的机械控制服务器继续对server变量初始化,创建共享对象;加载数据库,并进行网络监听。
3.如权利要求2所述的电容触摸屏设备的机械控制方法,其特征在于,所述初始化全局电容触摸屏设备的机械控制服务器配置包括:网络监听相关;虚拟内存相关,保存机制,复制相关,Hash相关设置,初始化命令表。
4.如权利要求1所述的电容触摸屏设备的机械控制方法,其特征在于,所述步骤二中,电容触摸屏对触摸点的处理过程为:
A、对触摸屏接口的坐标设置相应的模拟量,并进行采样,选取合适的采集次数;
B、根据采样采集的次数数据,进行分组,以一个分组中的平均值为该分组的数值;
C、根据分组的数值,计算各个分组之间的差值和绝对差值;同时设置相应的差值门限;
D、判断绝对值是否超过差值门限,以不超过差值门限的绝对值为采样点。
5.如权利要求1所述的电容触摸屏设备的机械控制方法,其特征在于,所述步骤二中,电容触摸屏对采用点的滤波过程为:将符合触摸屏范围的数据若干次,并对数据进行排序;
排序完成后,取中间两位的差值;若差值大于阈值,则丢弃。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于黄河水利职业技术学院,未经黄河水利职业技术学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010388019.3/1.html,转载请声明来源钻瓜专利网。