[发明专利]一种误检图像确定方法、装置、设备和介质有效

专利信息
申请号: 202010390417.9 申请日: 2020-05-08
公开(公告)号: CN111639653B 公开(公告)日: 2023-10-10
发明(设计)人: 鲁逸峰;郑春煌;邬国栋 申请(专利权)人: 浙江大华技术股份有限公司
主分类号: G06V10/46 分类号: G06V10/46;G06V10/74;G06V10/82;G06N3/08
代理公司: 北京同达信恒知识产权代理有限公司 11291 代理人: 刘金玲
地址: 310053 浙江*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 图像 确定 方法 装置 设备 介质
【说明书】:

发明公开了一种误检图像确定方法、装置、设备和介质,该方法基于预先训练完成的特征提取网络模型,确定待检测图像的第一特征向量,并确定第一特征向量与保存的背景目标特征池中每个特征向量的相似度,根据确定的相似度和预先训练完成的神经网络模型对待检测图像的识别结果,确定该待检测图像是否为误检图像。由于本发明通过预先训练完成的特征提取网络模型,确定待检测图像的第一特征向量,从而确定与背景目标特征池中的特征向量的相似度,从而针对任何图像都能检测出对应的相似度,从而保证根据相似度及预先训练完成的神经网络模型对待检测图像的识别结果,提高了确定的误检图像的准确性,并提高了误检图像确定方法的泛化性。

技术领域

本发明涉及机器学习技术领域,尤其涉及一种误检图像确定方法、装置、设备和介质。

背景技术

随着智能技术的发展,智能安防系统也越来越普及,而报警功能是智能安防系统的重要功能,智能安防系统的图像采集装置对关注目标进行跟踪,当关注目标越过划定的警戒线时触发智能安防系统的报警功能。目前对关注目标跟踪的主流方法包括深度学习,相关滤波等方法。智能安防系统的图像采集装置在跟踪目标时,会根据采集到的包含目标的目标图像进行判断。现有技术中,对关注目标进行跟踪的无论哪种方法,都会存在将背景图像当做目标图像,从而产生误检,并因误检导致报警的误报,其中,背景图像是除目标图像外的任何图像,该背景图像为可能只包含背景的图像,或者包含非目标物体的图像。

为了实现误报去除,需要首先从识别出的可能为目标图像的图像集合中,确定出误检图像,即不属于目标图像但被误识别为目标图像的背景图像。现有技术的基于轮廓模板的方法在确定误检图像时包括:

(1)将待检测图像发送给处理器。

(2)采用Haar检测算法对待检测图像进行检测,确定出待检测图像的Haar特征。

(3)对待检测图像的检测结果采用强分类器进行分类,具体是通过将待检测图像的Haar特征与轮廓模板进行匹配,匹配成功,则确定该待检测图像为误检图像,即该待检测图像为背景图像,匹配不成功,则确定该待检测图像为目标图像。

根据上述过程可知,现有技术是通过采用强分类器,将待检测图像的特征和轮廓模板进行匹配,从而识别出误检图像并去除。但根据固定的轮廓模板识别误检图像,无法识别与固定的轮廓模板不匹配的误检图像,因此,现有技术中仅根据固定的轮廓模板识别误检图像时,会导致无法准确地识别误检图像,泛化性较低。

现有技术中的基于小波变化的视频雨滴检测与去除方法包括:

(1)提取图像的小波域特征,得到图像边缘部分。

(2)先进行双边空间特征提取,再通过小波域特征提取,得到图像的主要边缘部分。

(3)用步骤1得到的图像边缘部分减去图像主要边缘部分得到图像的细节边缘部分。

(4)在静止区域去除图像细节边缘部分的错误检测,检测出运动区域,完成雨滴检测得到雨图。

(5)利用图像恢复方法进行雨滴的去除。

根据上述过程可知,现有技术中是通过提取图像的小波域特征,得到图像的边缘部分,再通过双边空间特征提取和小波域特征提取,得到图像的主要边缘部分,根据图像的边缘部分和主要边缘部分得到的细节边缘部分,确定出图像的雨图。

现有技术中的基于小波变化的视频雨滴检测与去除方法中,只能针对下雨场景进行误检图像的去除,导致泛化性较低。

发明内容

本发明实施例提供了一种误检图像确定方法、装置、设备和介质,用以解决现有的误检图像确定方法的泛化性低的问题。

本发明实施例提供了一种误检图像确定方法,所述方法包括:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大华技术股份有限公司,未经浙江大华技术股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010390417.9/2.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top