[发明专利]一种航空流量预测方法有效
申请号: | 202010394698.5 | 申请日: | 2020-05-12 |
公开(公告)号: | CN111292562B | 公开(公告)日: | 2020-08-18 |
发明(设计)人: | 杜文博;梁卜予;曹先彬;朱熙 | 申请(专利权)人: | 北京航空航天大学 |
主分类号: | G08G5/00 | 分类号: | G08G5/00;G06N3/04;G06N3/08 |
代理公司: | 北京航智知识产权代理事务所(普通合伙) 11668 | 代理人: | 陈磊;张桢 |
地址: | 100191*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 航空 流量 预测 方法 | ||
本发明属于航空交通状态预测领域,涉及一种基于时空图卷积神经网络与高度分层加权的航空流量预测方法,包括:基于空间注意力机制和时间注意力机制,构建时空注意力模块,为航路点附近的节点施加不同权重;基于空间维度上的图卷积和时间维度上的标准卷积,构建时空卷积模块;利用时空注意力模块和时空卷积模块,构建时空图卷积网络;利用航空流量历史数据对构建的时空图卷积网络进行学习,获得三个部分的不同影响参数,所述航空流量历史数据包括三个特征值:速度、流量、时间占有率;按照不同飞行层向时空图卷积网络输入不同高度层的各个节点的航空流量历史数据,得到每个高度层的航路流量预测,之后通过加权算法对总体航空流量进行预测。
技术领域
本发明属于航空交通状态预测领域,涉及一种基于时空图卷积神经网络与高度分层加权的航空流量预测方法。
背景技术
近年来,随着经济的快速发展,空中交通流量随之增大,空中交通变得更加复杂和不可控,随之而来就产生了空中交通堵塞的问题。因此,空中交通流量的预测已显得十分必要。借助历史交通流量值对未来流量做预测,本质是对交通流量的时间序列进行排序。当前已有一些研究,例如,使用多元线性回归进行推断,虽然该方法简单,但是准确性不高;使用最小二乘支持向量机,使用等式约束代替不等式约束,将二次规划问题变成线性方程求解问题,该算法更加先进,有较好的泛化能力,但是在中长期的预测上面误差较大。
对于民航领域,不同类型、不同大小以及不同航向的飞机有着不同的飞行高度,因此在使用图卷积神经网络对航路流量计算的时候要考虑不同飞行高度层如何进行加权的问题,目前尚未有相关研究。
发明内容
为了弥补在航路流量预测上面的不精准问题,本发明提出一种基于时空图卷积神经网络与高度分层加权的航空流量预测方法,旨在通过对航路点与航路组成的图进行卷积,提取出流量特征,并进行不同高度层的加权处理,实现一段时间内的航空流量精准预测。
本发明提供了一种航空流量预测方法,包括如下步骤:
S1:基于空间注意力机制和时间注意力机制,构建时空注意力模块,为航路点附近的节点施加不同权重;
S2:基于空间维度上的图卷积和时间维度上的标准卷积,构建时空卷积模块,以获得时空特征航空交通数据;
S3:利用步骤S1中构建的时空注意力模块和步骤S2中构建的时空卷积模块,构成一个时空块,通过叠加多个时空块并最后增加一个全连接层,分别构成小时部分、天部分和周部分三个部分,最终构建带有注意力机制的时空图卷积神经网络,其中,小时部分包括了临近的M个时段;天部分包括了一天以及n,n7天相同时段的多个时间序列;周部分包括了一周以及t周相同时段的多个时间序列;;
S4:利用航空流量历史数据对构建的时空图卷积网络进行学习,获得小时部分、天部分和周部分三个部分的不同影响参数,所述航空流量历史数据包括三个特征值:速度、流量、时间占有率;
利用式(15)将小时部分、天部分和周部分三个部分整合输出:
(15)
其中,、与为学习参数,分别反应航路流量预测中小时部分、天部分和周部分三个部分的不同影响参数;表示最终的预测结果;、、分别表示小时部分、天部分和周部分三个部分的预测结果;
S5:按照不同飞行层向时空图卷积网络输入不同高度层的各个节点的航流量历史数据,得到每个高度层的航路流量预测,之后通过加权算法对总体航空流量进行预测。
进一步,步骤S1中,
空间注意力机制为:
使用注意力机制自适应地捕捉空间维度中节点之间的动态关联性,空间维度中小时部分的信息为:
(1)
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010394698.5/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种高速服务器散热机柜及其散热方法
- 下一篇:一种航班航迹预测方法