[发明专利]人脸识别方法、装置、计算机设备及存储介质有效

专利信息
申请号: 202010438831.2 申请日: 2020-05-22
公开(公告)号: CN111340013B 公开(公告)日: 2020-09-01
发明(设计)人: 许剑清;沈鹏程;李绍欣 申请(专利权)人: 腾讯科技(深圳)有限公司
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62;G06N3/04
代理公司: 北京三高永信知识产权代理有限责任公司 11138 代理人: 张所明
地址: 518057 广东省深圳*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 识别 方法 装置 计算机 设备 存储 介质
【说明书】:

本申请实施例公开了一种人脸识别方法、装置、计算机设备及存储介质,属于计算机技术领域。该方法包括:获取目标人脸图像对应的第一特征图像以及第一特征图像对应的第一特征向量和第一特征数值,根据第一特征向量、第一特征数值以及模板人脸图像的第二特征图像对应的第二特征向量和第二特征数值,获取目标人脸图像和模板人脸图像之间的相似度,在相似度大于预设阈值的情况下确定目标人脸图像与模板人脸图像匹配。由于在获取相似度时考虑了特征图像的不确定度对相似度的影响,而不是仅考虑特征向量,可以避免人脸图像中存在干扰因素导致特征向量无法准确表示人脸特征的情况,可以提高人脸识别的准确率,能够保证人脸识别进行身份验证的安全性。

技术领域

本申请实施例涉及计算机技术领域,特别涉及一种人脸识别方法、装置、计算机设备及存储介质。

背景技术

人脸识别是基于人的脸部特征进行身份识别的一种生物特征识别技术,随着人工智能技术的飞速发展,基于人工智能的人脸识别在日常生活中的应用越来越广泛,可以在人脸识别支付、人脸识别登录应用等场景下对用户身份进行监控。

相关技术中,调用人脸识别模型,分别提取采集的目标人脸图像对应的第一特征向量和模板人脸图像对应的第二特征向量,根据第一特征向量和第二特征向量获取目标人脸图像和模板人脸图像之间的相似度,根据该相似度确定目标人脸图像与模板人脸图像是否匹配,从而确定人脸识别是否通过。

但是,由于人脸图像中存在干扰因素,例如人脸图像中存在遮挡物或者人脸图像本身比较模糊等,导致提取的特征向量不够准确,进而导致人脸识别的准确率较低。

发明内容

本申请实施例提供了一种人脸识别方法、装置、计算机设备及存储介质,可以提高人脸识别的准确率。所述技术方案包括如下内容。

一方面,提供了一种人脸识别方法,所述方法包括:对目标人脸图像进行特征提取,得到所述目标人脸图像对应的第一特征图像及所述第一特征图像对应的第一特征向量;对所述第一特征图像进行处理,得到所述第一特征图像对应的第一特征数值,所述第一特征数值用于表示所述第一特征图像描述所述目标人脸图像中人脸特征的不确定度;根据所述第一特征向量、所述第一特征数值以及模板人脸图像的第二特征图像对应的第二特征向量、所述第二特征图像对应的第二特征数值,获取所述目标人脸图像和所述模板人脸图像之间的相似度,所述第二特征数值用于表示所述第二特征图像描述所述模板人脸图像中人脸特征的不确定度;在所述相似度大于预设阈值的情况下,确定所述目标人脸图像与所述模板人脸图像匹配。

可选地,所述根据所述预测特征向量和所述样本特征向量之间的差异,训练所述特征提取子模型,包括:获取所述预测特征向量和所述样本特征向量之间的第一损失值,所述第一损失值表示所述预测特征向量和所述样本特征向量之间的差异;根据所述第一损失值,训练所述特征提取子模型。

可选地,所述根据所述第一特征向量、所述第一特征数值以及模板人脸图像的第二特征图像对应的第二特征向量、所述第二特征图像对应的第二特征数值,获取所述目标人脸图像和所述模板人脸图像之间的相似度之前,所述方法还包括:对所述模板人脸图像进行特征提取,得到所述模板人脸图像对应的第二特征图像及所述第二特征图像对应的第二特征向量;对所述第二特征图像进行处理,得到所述第二特征图像对应的第二特征数值。

可选地,所述对所述模板人脸图像进行特征提取,得到所述模板人脸图像对应的第二特征图像及所述第二特征图像对应的第二特征向量,包括:调用所述人脸识别模型中的特征提取子模型,对所述模板人脸图像进行特征提取,得到所述模板人脸图像对应的第二特征图像及所述第二特征图像对应的第二特征向量。

可选地,所述对所述第二特征图像进行处理,得到所述第二特征图像对应的第二特征数值,包括:调用所述人脸识别模型中的预测子模型,对所述第二特征图像进行处理,得到所述第二特征图像对应的第二特征数值。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于腾讯科技(深圳)有限公司,未经腾讯科技(深圳)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010438831.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top