[发明专利]五轴加工中心装配误差分析控制方法有效
申请号: | 202010482644.4 | 申请日: | 2020-06-01 |
公开(公告)号: | CN111580459B | 公开(公告)日: | 2021-04-13 |
发明(设计)人: | 唐贤康;赵军 | 申请(专利权)人: | 山东大学 |
主分类号: | G05B19/404 | 分类号: | G05B19/404 |
代理公司: | 济南金迪知识产权代理有限公司 37219 | 代理人: | 颜洪岭 |
地址: | 250061 山东*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 加工 中心 装配 误差 分析 控制 方法 | ||
1.一种五轴加工中心装配误差分析控制方法,其特征是,包括以下步骤:
步骤一:在五轴加工中心的工作台、立柱上方、立柱下方、滑枕、铣头C轴关节和刀尖点处分别固连一个坐标系;其中,在工作台上固连坐标系O5,在立柱下方固连坐标系O0,立柱上方固连坐标系04,滑枕上固连坐标系03,铣头C轴关节处固连坐标系O2,刀尖点处固连坐标系O1;
步骤二:给定齐次坐标变换所需要的参数:
O5坐标系和O0坐标系之间的参数为三个方向上的尺寸x5,y5,z5及其误差Δx5,Δy5,Δz5,两坐标系各轴之间的夹角为α5,β5,γ5;O4坐标系和O0坐标系之间的参数为三个方向上的尺寸x4,y4,z4及其误差Δx4,Δy4,Δz4,两坐标系各轴之间的夹角α4,β4,γ4;O3坐标系和O4坐标系之间的参数为三个方向上的尺寸x3,y3,z3及其误差Δx3,Δy3,Δz3,两坐标系各轴之间的夹角α3,β3,γ3;O2坐标系和O3坐标系之间的参数为三个方向上的尺寸x2,y2,z2及两坐标系各轴之间的夹角α2,β2,γ2;O1坐标系和O0坐标系之间的参数为三个方向上的尺寸x1,y1,z1;
步骤三:计算齐次坐标变换矩阵:
在任意两个坐标系Oi和Oj中,i和j为坐标系的序号,皆为小于5的正整数,在两个坐标系中,通过算式把坐标系之间的平移和旋转转化为含有位移参数和角度参数的一个矩阵,即齐次坐标矩阵,根据位移参数和角度参数,齐次坐标矩阵写下式:
其中:x代表坐标系Oj相对于Oi之间在x方向的位移,y代表坐标系Oj相对于Oi之间在y方向的位移,z代表坐标系Oj相对于Oi之间在z方向的位移;αij代表坐标系Oj的x轴和坐标系Oi的x轴之间的夹角,βij代表坐标系Oj的y轴和坐标系Oi的y轴之间的夹角,γij代表坐标系Oj的z轴和坐标系Oi的z轴之间的夹角;
(1)求解理想状态下各齐次坐标变换矩阵:
在理想状态下,Δx3,Δy3,Δz3,Δx4,Δy4,Δz4,Δx5,Δy5,Δz5皆为零,同时α3,β3,γ3,α4,β4,γ4,α5,β5,γ5也都为零;根据式(1),求得理想状态下各坐标系之间的齐次坐标变换矩阵;
坐标系O1相对于坐标系O2的齐次坐标变换矩阵在理想状态下和实际状态下是完全相同的,其齐次坐标变换矩阵为:
式中:x1为坐标系O1的相对于坐标系O2在x轴方向的位移;y1为坐标系O1的相对于坐标系O2在y轴方向的位移;z1为坐标系O1的相对于坐标系O2在z轴方向的位移;
坐标系O2相对于坐标系O3的齐次坐标变换矩阵为:
式中:x2为坐标系O2的相对于坐标系O3在x轴方向的位移;y2为坐标系O2的相对于坐标系O3在y轴方向的位移;z2为坐标系O2的相对于坐标系O3在z轴方向的位移;α2为坐标系O2的x轴与坐标系O3的x轴的夹角;β2为坐标系O2的y轴与坐标系O3的y轴的夹角;γ2为坐标系O2的z轴与坐标系O3的z轴的夹角;
T23在理想状态下和实际状态下是相同的;
在理想状态下,坐标系O3的各个坐标轴相对于坐标系O4的各个坐标轴的夹角为零,所以理想状态下O3相对于O4的齐次坐标变换矩阵为:
式中:x3为坐标系O3的相对于坐标系O4在x轴方向的位移;y3为坐标系O3的相对于坐标系O4在y轴方向的位移;z3为坐标系O3的相对于坐标系O4在z轴方向的位移;
在理想状态下,坐标系O4的各个坐标轴相对于坐标系O0的各个坐标轴的夹角为零,所以理想状态下坐标系O4相对于坐标系O0的齐次坐标变换矩阵为:
式中:x4为坐标系O4的相对于坐标系O0在x轴方向的位移;y4为坐标系O4的相对于坐标系O0在y轴方向的位移;z4为坐标系O4的相对于坐标系O0在z轴方向的位移;
在理想状态下,坐标系O5的各个坐标轴相对于坐标系O0的各个坐标轴的夹角为零,所以理想状态下坐标系O5相对于坐标系O0的齐次坐标变换矩阵为:
式中:x5为坐标系O5的相对于坐标系O0在x轴方向的位移;y5为坐标系O5的相对于坐标系O0在y轴方向的位移;z5为坐标系O5的相对于坐标系O0在z轴方向的位移;
设在O1坐标系中刀尖点的坐标为设在O1坐标系中刀尖点的坐标为根据齐次坐标变换原理求得理想状态下刀尖点在工作台坐标系O5中的坐标,即求解方程:
T50[x,y,z,1]T=T40T34T23T12[0,0,0,1]T, (7)
式中:x,y,z代表理想状态下刀尖点在工作台坐标系O5中的坐标值;
(2)求解实际状态下齐次坐标变换矩阵:
实际状态下需要考虑各个坐标系之间位移值的误差以及各个坐标轴之间的微小夹角,根据式(2),求得实际状态下的各个齐次坐标变换矩阵,考虑到α3,β3,γ3,α4,β4,γ4,α5,β5,γ5是无穷小量,因此有代换:sinθi=θi,cosθi=0;综合上述条件,求得实际状况下各个坐标系之间齐次坐标变换矩阵:
与求解方程(7)类似,考虑到坐标系O1相对于坐标系O2的齐次坐标变换矩阵,坐标系O2相对于坐标系O3的齐次坐标变换矩阵在理想状态下和实际状态下是完全相同的,即T12=T12’,T23=T23’,求得实际状况下刀尖点坐标在工作台坐标系中的坐标值(x’,y’,z’),即求解方程:
T'50[x',y',z',1]T=T'40T'34T23T12[0,0,0,1]T (11)
式中:x’,y’,z’代表实际状态下刀尖点在工作台坐标系O5中的坐标值;
步骤四:求得五轴加工中心装配误差:
通过式(7)和(11)分别求得理想状态和实际状态下刀尖点在工作台坐标系下的坐标值,则通过求解出的坐标值求得误差;
式中:d为五轴加工中心的装配误差值;
步骤五:根据步骤四计算出的误差值调整结构参数和公差值,返回步骤一再次计算,直到得到工件加工所需要的精度结果为止。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010482644.4/1.html,转载请声明来源钻瓜专利网。