[发明专利]人脸图片质量评估方法、装置及存储介质在审

专利信息
申请号: 202010492021.5 申请日: 2020-06-03
公开(公告)号: CN111612785A 公开(公告)日: 2020-09-01
发明(设计)人: 梁晓曦 申请(专利权)人: 浙江大华技术股份有限公司
主分类号: G06T7/00 分类号: G06T7/00
代理公司: 北京康信知识产权代理有限责任公司 11240 代理人: 张丹红
地址: 310051 浙江*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 图片 质量 评估 方法 装置 存储 介质
【说明书】:

发明提供了一种人脸图片质量评估方法、装置及存储介质。该方法包括:获取待评估的目标图片;通过质量评分网络对所述目标图片进行质量评估,其中,所述质量评分网络包括分类部分和回归部分,所述分类部分用于确定所述目标图片对应的图片类别,所述图片类别包括:误检图片和非误检图片,所述回归部分用于确定所述目标图像对应的质量评分。通过本发明,解决了如何有效准确地进行人脸图片质量评估的问题,进而达到了准确快速地实现人脸图片质量评估的效果。

技术领域

本发明涉及图片处理技术领域,具体而言,涉及一种人脸图片质量评估方法、装置及存储介质。

背景技术

人脸识别技术在最近几年飞速发展,有着广阔的应用前景。

在安防领域,视频监控是一个重要的应用场景,真实场景中抓拍的人脸图片往往是复杂多样的,会受到人脸姿态、光照、遮挡等因素影响,人脸图片质量的好坏也参差不齐。另外,在抓拍过程中同一个人也会产生很多张图片,如果对每一张图片都进行识别往往耗时较多,而且如果对误检的非人脸图片或质量差的人脸图片进行识别会引起误报。

因此,如何从一系列人脸图片中选出质量好的图片用于识别,从而提升人脸识别的速度和精度,是目前亟待解决的问题。

发明内容

本发明实施例提供了一种人脸图片质量评估方法、装置及存储介质,以至少解决如何有效准确地进行人脸图片质量评估的问题。

根据本发明的一个实施例,提供了一种人脸图片质量评估方法,包括:获取待评估的目标图片;通过质量评分网络对所述目标图片进行质量评估,其中,所述质量评分网络包括分类部分和回归部分,所述分类部分用于确定所述目标图片对应的图片类别,所述图片类别包括:误检图片和非误检图片,所述回归部分用于确定所述目标图像对应的质量评分。

在至少一个示例性实施例中,通过质量评分网络对所述目标图片进行质量评估之前,所述方法还包括:通过去误检分类网络确定所述目标图片是否为误检图片,其中,所述去误检分类网络是采用残差网络基于第一训练样本图片训练得到的,所述第一训练样本图片包括:检测出的人脸图片和误检出的非人脸图片;在确定所述目标图片不是误检图片的情况下,控制执行通过所述质量评分网络对所述目标图片进行质量评估的操作,否则,将所述目标图片作为误检图片过滤掉。

在至少一个示例性实施例中,通过质量评分网络对所述目标图片进行质量评估包括:通过所述质量评分网络的所述分类部分确定所述目标图片对应的图片类别,以及通过所述质量评分网络的所述回归部分确定所述目标图片对应的质量评分。

在至少一个示例性实施例中,通过质量评分网络对所述目标图片进行质量评估之后,所述方法还包括以下至少之一:在所述目标图片对应的图片类别是误检图片的情况下,将所述目标图片作为误检图片过滤掉;在所述目标图片对应的质量评分低于预定阈值的情况下,将所述目标图片作为误检图片过滤掉。

在至少一个示例性实施例中,所述质量评分网络基于包括多个卷积层、多个池化层和两个全连接层的卷积神经网络,所述两个全连接层中的一个全连接层用于输出所述分类部分的图片类别的结果,另一个全连接层用于通过sigmoid层输出所述回归部分的质量评分的结果,所述分类部分和所述回归部分共享所述卷积神经网络的权重。

在至少一个示例性实施例中,所述质量评分网络中所述分类部分对应的损失函数采用focal_loss;和/或,所述质量评分网络中所述回归部分对应的损失函数采用SmoothL1Loss。

在至少一个示例性实施例中,所述分类部分是基于第二训练样本图片和所述第二训练样本图片对应的分类标签训练得到的,所述回归部分是基于所述第二训练样本图片和所述第二训练样本图片对应的质量分标签训练得到的。

在至少一个示例性实施例中,所述第二训练样本图片包括以下至少之一:原始图片;对原始图片进行随机裁剪后的图片;对原始图片进行分辨率尺寸缩放后的图片。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大华技术股份有限公司,未经浙江大华技术股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010492021.5/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top