[发明专利]基于神经网络的强度解调应变传感方法有效

专利信息
申请号: 202010515483.4 申请日: 2020-06-09
公开(公告)号: CN111750793B 公开(公告)日: 2021-06-15
发明(设计)人: 刘庆文;何祖源;庄语迪;王一凡;陈典 申请(专利权)人: 上海交通大学;朴牛(上海)科技有限公司
主分类号: G01B11/16 分类号: G01B11/16;G06N3/08
代理公司: 上海交达专利事务所 31201 代理人: 王毓理;王锡麟
地址: 200240 *** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 神经网络 强度 解调 应变 传感 方法
【说明书】:

一种基于神经网络的强度解调应变传感方法,通过在应变解调中使用神经网络进行互相关运算实现解调时间的缩短,该神经网络依次使用由啁啾探测脉冲和匹配滤波器产生的训练数据集和测试数据集进行训练和测试,即在训练阶段神经网络模型学习瑞利强度曲线和对应频率的映射关系,并在测试阶段对输入的瑞利强度曲线进行频率预测,从而对待测光纤进行应变恢复。本发明在保证长距离、高空间分辨率的同时,能够将解调速度提高数百倍,实现实时解调。

技术领域

本发明涉及的是一种分布式光纤应用领域的技术,具体是一种基于神经网络的强度解调应变传感方法。

背景技术

基于光时域反射仪(OTDR)的分布式光纤传感器可以检测和定位在待测光纤上任何位置发生的一个或者多个事件,在测量管道泄漏、边境安防和结构安全检测等大型工程上有着广阔的应用前景。根据解调方式的不同,基于OTDR的分布式光纤传感器可以分为相位解调传感器和强度解调传感器。其中,基于相位解调的传感器已经得到了广泛的研究和发展,该方法的原理是相位变化与振动幅度成正比。然而,由于解调后的相位始终周期性地分布在2π的范围内,该解调方法只适用于幅度小的动态信号的检测。

而强度解调分布式光纤传感器既可以用于动态信号,也可以用于静态信号测量。该方法基本原理是应变所导致的光纤瑞利图谱特征改变,等效于探测脉冲中心频率变化所引起的瑞利图谱改变。强度解调分布式光纤系统通常需要步进式扫频:依次发射不同中心频率的探测脉冲,每个频率的探测脉冲各获得一条瑞利强度曲线,然后提取光纤上同一位置处不同的频率的瑞利强度曲线,比较应变变化前后的曲线得到待测参量引起的等效激光频率的变化量,就可以恢复出待测光纤上的应变信息。最近提出的使用啁啾脉冲代替步进式扫频的分布式系统,通过同时产生啁啾脉冲射频信号和单频正弦射频信号经激光调制后分别通过探测光路和本地光路各自进行强度调制及放大后输出探测光至传感光纤,然后通过将反射回波与本地光耦合拍频后经匹配滤波得到同一时刻多个频率的瑞利曲线,通过对提取出的瑞利特征信息进行互相关运算从而恢复出发生在测温光纤上的外界应变变化。这种测量方式具有长距离、高空间分辨率的优势,然而,强度解调法解调应变时需要大量的互相关运算,这导致了解调时间远远大于测量时间,在实践中无法实现实时解调。

发明内容

本发明针对现有的光纤传感器的解调过程中互相关运算的计算量太大,从而无法对检测到的瑞利特征信息进行实时快速处理的问题,提出了一种基于神经网络的强度解调应变传感方法,在保证长距离、高空间分辨率的同时,能够将解调速度提高数百倍,实现实时解调。

本发明是通过以下技术方案实现的:

本发明涉及一种基于神经网络的强度解调应变传感方法,通过在应变解调中使用神经网络进行互相关运算实现解调时间的缩短,该神经网络依次使用由啁啾探测脉冲和匹配滤波器产生的训练数据集和测试数据集进行训练和测试,即在训练阶段神经网络模型学习瑞利强度曲线和对应频率的映射关系,并在测试阶段对输入的瑞利强度曲线进行频率预测,从而对待测光纤进行应变恢复。

所述的神经网络由一个输入层、一个输出层和五个隐层组成,能够检测和提取动态应变。神经网络的激活函数优选为ReLU函数,其输出为其中:xi代表神经元的输入和输出,wi代表调整后的权重,θ代表神经元的阈值,f代表非线性激活函数。

所述的瑞利强度曲线是指:通过宽频的啁啾探测光脉冲经放大后输出探测光至传感光纤,然后通过将反射回波与本地光耦合拍频后,经过一个或若干个具有不同中心频率的匹配滤波器,得到待测光纤在相应中心频率下的瑞利强度曲线。

所述的训练数据集,是利用第一个啁啾探测脉冲返回的原始数据通过若干频率滤波器后得到的瑞利强度曲线集。为了进一步提高系统的空间分辨率,即减小频率间隔,采用三次样条插值进一步对瑞利强度曲线进行处理。在训练数据集中,大部分用来输入到神经网络中进行学习,少部分用来评估神经网络模型的性能。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海交通大学;朴牛(上海)科技有限公司,未经上海交通大学;朴牛(上海)科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010515483.4/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top