[发明专利]无约束场景下的基于上下文推理的人脸检测方法在审

专利信息
申请号: 202010531633.0 申请日: 2020-06-11
公开(公告)号: CN111898410A 公开(公告)日: 2020-11-06
发明(设计)人: 徐琴珍;杨哲;邵文韬;刘茵茵;侯坤林;朱颖;杨绿溪 申请(专利权)人: 东南大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62
代理公司: 南京众联专利代理有限公司 32206 代理人: 叶涓涓
地址: 211189 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 无约束 场景 基于 上下文 推理 检测 方法
【说明书】:

发明提供了一种在无约束场景下的基于上下文推理的人脸检测方案,属于多媒体信号处理领域。本发明将训练集进行数据增广,以VGGNet‑16作为基础特征提取网络,通过低层级特征金字塔网络加权地融合不同层特征,并在预测环节采用上下文辅助预测模块扩充子网络以加深、加宽网络模型,引入自适应锚点取样的数据增强方式和多尺度训练方法,增强了模型对于尺度的适应力。本发明不仅可提取出最具表达力的描述信息,还能较好地弥补未被充分提取的面部特征,且可优化对面部特征的利用率,适用于检测难度较高的无约束场景,尤其对微小的、模糊的、遮挡的人脸也能实现精准检测。

技术领域

本发明属于图像处理技术领域,涉及一种无约束场景下的基于上下文推理的人脸检测方法。

背景技术

智能化终端设备的普及深刻地影响着人类的思维方式,对其社交本质有了全新的定义。人脸检测是计算机视觉领域中最贴合日常生活的应用,它将人类从繁重的视觉处理工作中解脱出来,转而用机器去分析和汇总图像、视频中的指定信息,对时代社会的发展产生了深远的影响。在智能手机上,iPhone X、华为Mate20pro分别在IOS平台、安卓平台实现3D人脸识别解锁,更好地保护了隐私;在安防监控中,可以通过人脸识别技术去追踪和捕获不法分子,加强了治安维护力度;在财产安全方面,支付宝率先推出刷脸支付、信用贷款进行身份认证,提高效率的同时也保证了安全性。

早期主流的人脸检测方法,大都基于人工设计的模板匹配技术,对无遮挡的正面清晰人脸的检测效果较好,尽管易于实现,且几乎不受光照、图片成像质量影响,但由于人脸的高可塑性,无法制定出完全有效的人脸模板以适应姿势、尺度等的变化,导致精度受限。仅仅通过机械地比对手工特征与目标人脸之间的自相关性来判定图像中是否存在人脸的传统人脸检测方法并不适用于无约束场景。

随着深度学习的飞速发展,基于卷积神经网络的人脸检测方法以其强大的表征学习与非线性建模能力逐步取代了传统人脸检测方法,显著提升了检测性能,尤其对于毫无遮挡的清晰人脸几乎都可以达到百分之百的准确率。但是,在自然场景下的无约束人脸极易受到遮挡、光照、表情、姿态等外部环境因素的干扰,造成面部特征提取、利用不充分;此外,尺寸较小的低分辨率人脸更是瓶颈所在,以小尺寸锚点对小人脸进行密集采样,极易产生过多的背景负样本,造成误检率上升。现有无约束场景下的人脸检测方法其准确率尚显不足,未能取得令人满意的效果。

发明内容

为解决上述问题,本发明提供了一种无约束场景下的基于上下文推理的人脸检测方法,着重在以下两方面进行改进和优化:一方面,充分提取面部特征,尤其是更具表达力的描述信息,通过低层级特征金字塔网络加权地融合不同层级的特征,并在预测环节采用上下文辅助预测模块扩充子网络,更深、更宽的网络模型可以较好地弥补未被充分提取的面部特征;另一方面,引入自适应锚点取样的数据增强方式和多尺度方法,增强了模型对于尺度的适应力,进而提高对于面部特征的利用率。

为了达到上述目的,本发明提供如下技术方案:

无约束场景下的基于上下文推理的人脸检测方法,包括如下步骤:

步骤1,对WIDER FACE(目前最为权威的人脸检测基准)训练集进行数据增广;

步骤2,基于步骤1的增广图片,以VGGNet-16(经典的深度卷积神经网络)作为基础特征提取网络,通过低层级特征金字塔网络加权地融合不同层的特征,并在预测环节采用上下文辅助预测模块扩充子网络,进而加深、加宽网络模型;

步骤3,在训练参数初始化后,应用多尺度训练方法指导模型的自主学习过程,当损失收敛后保存模型,并进行检测。

进一步的,所述步骤1具体包括如下子步骤:

步骤1.1:对WIDER FACE训练集中的图片进行水平翻转和随机裁剪,作为初步预处理,具体操作为:首先将输入图像扩展为原先尺寸的4倍,接着再对每一张图片进行镜像水平翻转,最后随机地裁剪出640×640的区域大小,即应用下式进行处理:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010531633.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top