[发明专利]一种用于磁悬浮列车的悬浮系统控制方法在审
申请号: | 202010561052.1 | 申请日: | 2020-06-18 |
公开(公告)号: | CN111806246A | 公开(公告)日: | 2020-10-23 |
发明(设计)人: | 孙友刚;徐俊起;陈琛;林国斌;荣立军;吉文;倪菲;高定刚 | 申请(专利权)人: | 同济大学 |
主分类号: | B60L13/06 | 分类号: | B60L13/06 |
代理公司: | 上海科盛知识产权代理有限公司 31225 | 代理人: | 陈源源 |
地址: | 200092 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 用于 磁悬浮 列车 悬浮 系统 控制 方法 | ||
1.一种用于磁悬浮列车的悬浮系统控制方法,其特征在于,具体包括以下步骤:
S1、基于磁悬浮列车的悬浮控制动力学模型构造二阶滑模面,并且引入与定位误差信号相关的、在线实时训练神经网络逼近的非线性有界函数,得到最终滑模变结构控制律模型,用于构建悬浮系统的磁悬浮控制器;
S2、磁悬浮控制器中输入设定的悬浮系统物理参数;
S3、磁悬浮控制器实时获取轨道和车体间的间隙数据后输出控制信号;
S4、悬浮系统的外围硬件接收控制信号后驱动悬浮电磁铁在有限时间内移动到目标位置,并保持在该位置误差限制范围内。
2.根据权利要求1所述的一种用于磁悬浮列车的悬浮系统控制方法,其特征在于,所述的步骤S1中,最终滑模变结构控制律模型的表达式为:
其中,sgn(·)为符号函数,s是动态滑模面,e为系统误差,c1、c2、η、μ为控制增益参数,和分别为未知的非线性有界函数f(·)和g(·)的神经网络逼近,x为网络输入,j为第j个隐含层节点,W*,L*是f(·)和g(·)的理想网络权重,hf(x)和hg(x)为神经网络的Koski方程,r为理想跟踪指令;
根据最小参数学习法,f(·)和g(·)的自适应率定义为单参数和
其中,参数γ1,γ2,Ω1,Ω2∈R+。
3.根据权利要求1所述的一种用于磁悬浮列车的悬浮系统控制方法,其特征在于,所述步骤S1中最终滑模变结构控制律模型构建方法包括:
S11、建立仿射非线性数学模型;
S12、根据仿射非线性数学模型进行滑模控制器的滑膜控制律设计,得到滑模变结构控制律模型和两个非线性有界函数f(·)和g(·);
S13、通过RBF神经网络在线学习逼近滑模变结构控制律模型中的非线性有界函数f(·)和g(·),得到最终滑模变结构控制律模型。
4.根据权利要求3所述的一种用于磁悬浮列车的悬浮系统控制方法,其特征在于,所述的步骤S11中,仿射非线性数学模型的表达式为:
其中,
式中,z1表示气隙间距,z2表示气隙间距变化速度,z3表示气隙间距加速度,m为车身质量,μ0为真空磁导率,Nm为线圈绕组个数,Am为磁体的截面积,Rm表示电磁铁绕组电阻。
5.根据权利要求4所述的一种用于磁悬浮列车的悬浮系统控制方法,其特征在于,所述的步骤S12中,滑模变结构控制律模型的表达式为:
式中,uSMC(x,t)为控制输出,η,μ∈R+分别表示恒定到达系数和指数到达系数,r为理想跟踪指令,c1,c2∈R+是正的位置控制增益,e表示系统误差,s表示动态滑模面。
6.根据权利要求1所述的一种用于磁悬浮列车的悬浮系统控制方法,其特征在于,所述的悬浮系统包括间隙传感器、斩波器、磁悬浮控制器和电磁铁,所述的间隙传感器通过斩波器连接磁浮控制器,所述的电磁铁通过外围硬件磁浮控制器,所述间隙传感器安装电磁铁上。
7.根据权利要求6所述的一种用于磁悬浮列车的悬浮系统控制方法,其特征在于,所述的间隙传感器通过间隙处理板、控制板和接口转换板连接斩波器。
8.根据权利要求1所述的一种用于磁悬浮列车的悬浮系统控制方法,其特征在于,所述的磁悬浮控制器包括计算机硬件和算法软件,用于执行神经网络逼近算法的运行、获取输入的设定的悬浮系统物理参数,以及实时获取轨道和车体间的间隙数据并输出控制信号。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于同济大学,未经同济大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010561052.1/1.html,转载请声明来源钻瓜专利网。