[发明专利]一种基于生成对抗网络的虚拟人声视唱方法和系统有效
申请号: | 202010590728.X | 申请日: | 2020-06-24 |
公开(公告)号: | CN111816148B | 公开(公告)日: | 2023-04-07 |
发明(设计)人: | 吴清强;刘昆宏;张敬峥;吴苏悦;宗雁翔;朱何莹 | 申请(专利权)人: | 厦门大学 |
主分类号: | G10H1/00 | 分类号: | G10H1/00;G06N3/08;G06N3/0442;G06N3/045;G06N3/0464 |
代理公司: | 北京金咨知识产权代理有限公司 11612 | 代理人: | 严业福 |
地址: | 361005 福建省*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 生成 对抗 网络 虚拟 人声 视唱 方法 系统 | ||
本发明提供了一种基于生成对抗网络的虚拟人声视唱方法和系统,所述方法包括:步骤一、输入abc记谱法文件和用Vocaloid制作的人声唱谱音频;步骤二、将abc文件转化为自定义格式的文本文件,将自定义文本文件和人声音频作为Tacotron‑2神经网络模型的输入;步骤三、在Tacotron‑2神经网络中,输入的文本文件中的字符通过512维的字符嵌入Character Embedding表示;步骤四、完成了虚拟人声波形文件的合成;步骤五、得到一段完整的虚拟人声视唱音乐。本发明用虚拟人声演唱乐谱,输出的语音节奏流畅自然,从而使得听者在聆听信息时会感觉自然,而不会感到设备的语音输出带有机械感与生涩感。
技术领域
本发明属于计算机领域,具体地,涉及一种基于生成对抗网络的虚拟人声视唱方法和系统。
背景技术
学习音乐时,看谱并唱出是学习音乐的基础,称为“视唱”。视唱练耳特别重要,然而问题是视唱练耳的课外活动需要大量练习才能达到学习效果。显然,对于绝大多数的普通家庭,教师是无法陪伴学生全天候完成练习。因为学习与练习有着分不开的联系,练习对于唱歌和听力至关重要,所以,可以得知传统的听力训练中的听力训练课程存在一些缺陷,需要对其做出一些改进。“真人唱谱,逼真易学。”虚拟人声视唱乐谱相当于真人唱谱,弥补了诸如钢琴、电子琴等乐器音色与人声不同的短板,大大提高了识谱速度和唱谱能力。当前的音乐相关应用软件发展很快,新增了各种乐器的音色,也可以根据乐谱自动播放,但是没有在音色中加入人声。
传统的模拟人声演唱方法部分或全部采用拼接等方式,比如将每个唱名按时间长度和节拍简单拼接,这类方法虽然操作简单,但是结果生硬,与真人演唱差别较大,效果并不十分理想。如何用真实人声演唱乐谱是一个需要解决的问题。
发明内容
本发明提供了一种基于生成对抗网络的虚拟人声视唱方法和系统,能用虚拟人声演唱乐谱,输出的语音节奏流畅自然,从而使得听者在聆听信息时会感觉自然,而不会感到设备的语音输出带有机械感与生涩感。
为了解决上述问题,本发明提供一种基于生成对抗网络的虚拟人声视唱方法,所述方法包括:
步骤一、输入abc记谱法文件和用Vocaloid制作的人声唱谱音频,人声唱谱音频与abc文件相对应;
步骤二、将abc文件转化为自定义格式的文本文件,将自定义文本文件和人声音频作为Tacotron-2神经网络模型的输入;
步骤三、在Tacotron-2神经网络中,输入的文本文件中的字符通过512维的字符嵌入Character Embedding表示,而后通过3个卷积层,卷积层的输出再传递到一个双向LSTM层中,同时,使用位置敏感注意力Location Sensitive Attention使得模型在输入的过程中始终向前移动,Tacotron-2神经网络生成的模型即梅尔频谱将作为MelGAN模型的输入;
步骤四、将Tacotron-2神经网络训练好的模型和原始人声音频文件作为MelGAN生成对抗神经网络模型的输入,通过生成器和鉴别器,最终将会得到特征图Feature Map以及合成的人声唱谱音频文件,完成了虚拟人声波形文件的合成;
步骤五、根据场景将相应的音频片段粘合拼接起来,最终将得到一段完整的虚拟人声视唱音乐。
第二方面,本申请实施例提供了一种基于生成对抗网络的虚拟人声视唱系统,所述系统包括:
输入模块,用于输入abc记谱法文件和用Vocaloid制作的人声唱谱音频,人声唱谱音频与abc文件相对应;
转换模块,用于将abc文件转化为自定义格式的文本文件,将自定义文本文件和人声音频作为Tacotron-2神经网络模型的输入;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于厦门大学,未经厦门大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010590728.X/2.html,转载请声明来源钻瓜专利网。