[发明专利]一种推荐上车点的方法和系统在审

专利信息
申请号: 202010630125.8 申请日: 2020-07-03
公开(公告)号: CN111861647A 公开(公告)日: 2020-10-30
发明(设计)人: 杨建涛;熊婷;陈望婷;马利 申请(专利权)人: 北京嘀嘀无限科技发展有限公司
主分类号: G06Q30/06 分类号: G06Q30/06;G06Q50/30
代理公司: 成都七星天知识产权代理有限公司 51253 代理人: 杨永梅
地址: 100193 北京市*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 推荐 上车 方法 系统
【说明书】:

本申请实施例公开了一种推荐上车点的方法。所述方法包括:获取用户的当前位置;基于所述用户的当前位置,生成至少一个候选上车点信息;向所述用户显示所述至少一个候选上车点信息;接收所述用户选择所述至少一个候选上车点信息中的其中一个候选上车点信息;基于所述用户选择的其中一个候选上车点信息,向所述用户显示推荐上车点。本申请可以基于用户的当前位置和用户选择的候选上车点,为用户推荐上车点,用户不需输入检索词只需要进行一次点选或者其他简单的选择操作即可得到合适的上车点推荐,使得推荐上车点更准确、更适合用户到达,并且节省了用户的时间,提升了用户的体验效果。

技术领域

本申请涉及出行领域,特别涉及一种推荐上车点的方法和系统。

背景技术

随着科技的快速发展,人们通过在线打车服务平台打车出行已经成为一种普遍现象,并且随着智能化服务的快速发展,人们的出行也越来越便利和高效。为了使服务提供者(例如,司机)能够在较短的时间内接载到服务请求者(例如,乘客)以提高效率,为服务请求者推荐合适的上车点至关重要。因此,有必要提供一种推荐上车点的方法和系统。

发明内容

本申请的一个方面提供一种推荐上车点的方法。所述方法包括:获取用户的当前位置;基于所述用户的当前位置,生成至少一个候选上车点信息;向所述用户显示所述至少一个候选上车点信息;接收所述用户选择所述至少一个候选上车点信息中的其中一个候选上车点信息;基于所述用户选择的其中一个候选上车点信息,向所述用户显示推荐上车点。

在一些实施例中,所述基于所述用户的当前位置,生成至少一个候选上车点信息包括:检测到打开应用程序的触发操作后,基于所述用户的当前位置,生成至少一个候选上车点信息;或者检测在时间阈值内用户是否在应用程序上进行操作:若否,则基于所述用户的当前位置,生成至少一个候选上车点信息。

在一些实施例中,所述基于所述用户的当前位置,生成至少一个候选上车点信息包括:获取所述用户的历史订单数据;基于所述用户的当前位置和所述历史订单数据,确定候选上车点。

在一些实施例中,所述候选上车点包括距离所述用户当前位置在第一阈值范围内的历史上车点。

在一些实施例中,所述基于所述历史上车点,确定候选上车点包括:若所述历史上车点包括至少两个:对所述至少两个历史上车点进行排序;选择排序靠前且距离大于第二阈值的至少两个历史上车点作为候选上车点。

在一些实施例中,所述基于所述用户的当前位置,生成至少一个候选上车点信息还包括:基于所述用户的当前位置,按照第一预设规则召回距离所述当前位置在第三阈值范围内的兴趣点;利用机器学习模型处理所述兴趣点的特征数据,得到所述兴趣点的评分;对所述兴趣点的评分进行排序;选择排序靠前的至少一个兴趣点作为候选上车点。

在一些实施例中,所述第一预设规则包括与所述用户的当前位置的距离和所述兴趣点的热度。

在一些实施例中,所述兴趣点的特征数据包括属性特征、与所述用户当前位置的关系特征和用户画像。

在一些实施例中,所述机器学习模型通过以下方法获得:获取训练样本;其中,训练样本包括训练兴趣点的评分和以下特征中至少一个:用户位置、训练兴趣点与所述用户位置的距离、训练兴趣点的热度、训练兴趣点的属性特征、训练兴趣点与用户位置的关系特征、用户画像;将所述训练兴趣点的评分标记作为参考评分;基于所述训练样本及标记结果训练初始模型得到所述机器学习模型。

在一些实施例中,所述向所述用户显示所述至少一个候选上车点信息包括以列表形式向所述用户显示所述候选上车点。

在一些实施例中,所述用户选择所述至少一个候选上车点信息中的其中一个候选上车点信息包括用户通过触屏点选或者语音识别的方式选择。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京嘀嘀无限科技发展有限公司,未经北京嘀嘀无限科技发展有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010630125.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top