[发明专利]一种基于改进图像块分类算法的BP神经网络图像压缩方法在审
申请号: | 202010635602.X | 申请日: | 2020-07-04 |
公开(公告)号: | CN112004092A | 公开(公告)日: | 2020-11-27 |
发明(设计)人: | 俞华;黄纯德;刘永鑫;赵亚宁;孟晓凯;杨虹;白洋;韩钰;田贇 | 申请(专利权)人: | 国网山西省电力公司电力科学研究院 |
主分类号: | H04N19/42 | 分类号: | H04N19/42;H04N19/176;G06N3/08;G06N3/04;G06K9/62 |
代理公司: | 太原新航路知识产权代理事务所(特殊普通合伙) 14112 | 代理人: | 王勇 |
地址: | 030001*** | 国省代码: | 山西;14 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 改进 图像 分类 算法 bp 神经网络 压缩 方法 | ||
本发明涉及现代通信网络图像数据压缩技术,具体是一种基于改进图像块分类算法的BP神经网络图像压缩方法。本发明解决了现有通信网络图像数据压缩技术压缩性能较差的问题。一种基于改进图像块分类算法的BP神经网络图像压缩方法,该方法是采用如下步骤实现的:步骤1:计算出各个图像块的均方误差SMSE和整幅图像的均方误差FIMSE;步骤2:将图像块划分成三种图像子块;步骤3:对分类后的图像子块归一化处理;步骤4:训练BP神经网络得到压缩数据集即完成图像数据编码过程;步骤5:对步骤2分类的图像子块分别进行不同程度压缩;步骤6:进行解码图像重建。本发明适用于现代通信网络环境复杂、特殊和恶劣工程领域的复杂图像识别与特征分析。
技术领域
本发明涉及现代通信网络图像数据压缩技术,具体是一种基于改进图像块分类算法的BP神经网络图像压缩方法。
背景技术
图像传输技术在众多的信息通信方法中已成为重要的通信技术,但由于图像信息巨大的数据量,造成数据传输时极其占用传输带宽,最终导致图像传输和保存也因此经历了诸多困难。因此,为了有效利用现代通信网络和存储设备空间,无论是图像数据传输还是存储,有必要对图像数据进行压缩处理。
当前图像压缩主要分为两类:一类是通过图像数据的统计冗余特点全部恢复图像原来的数据而不引起失真能完整的还原数据的无损压缩,但由于图像特征变化不一、压缩数据统计冗余度的理论限制等,导致该方法在图像压缩比上很难控制到很低;另一类是利用了人眼对图像中某些因素不敏感的特点进行的一种解压缩数据与原来图像数据有差异却又非常近似的但会丢失部分数据且无法恢复的有损压缩,常用的方法包括小波变换、小波包分解等。由于采用的是对整幅图像仍统一压缩法,因此仍然导致图像重要细节信息的损失。
然而实践表明,小波变换、小波包分解等图像压缩算法对图像重要细节的保持能力仍需提高。基于此,有必要发明一种全新的图像压缩技术,以解决现有现代通信网络图像数据压缩技术压缩性能较差的问题。
发明内容
本发明为了解决现有通信网络图像数据压缩技术压缩性能较差的问题,提供了一种基于改进图像块分类算法的BP神经网络图像压缩方法。
本发明是采用如下技术方案实现的:
一种基于改进图像块分类算法的BP神经网络图像压缩方法,该方法是采用如下步骤实现的:
步骤1:根据图像子块的均值SIM,计算出各个图像块的均方误差SMSE和整幅图像的均方误差FIMSE;
步骤2:利用改进的图像块分类算法合理选取图像块的分类阈值δ将图像块划分成三种图像子块,即图像平滑块、目标块、边缘块;
步骤3:对分类后的图像子块归一化处理,使每个像素点的像素值适用于BP神经网络的输入数据集0~1之间的要求;
步骤4:采用内存需求最大、收敛速度最快的Levenberg-Marquardt算法训练BP神经网络得到压缩数据集即完成图像数据编码过程;
步骤5:根据训练后的BP神经网络对步骤2分类的图像子块分别进行不同程度压缩;
步骤6:依据步骤5压缩数据集通过图像数据反归一化和图像块恢复进行解码图像重建。
与现有通信网络图像数据压缩技术相比,本发明所述的一种基于改进图像块分类算法的BP神经网络图像压缩方法具有如下优点:一、本发明将改进的图像块分类算法引入到BP神经网络图像压缩中,由于改进的图像块分类算法对各参数的取值是建立在图像块均方误差和图像块分布特征科学分析的基础上进行合理取值,因此其压缩性能更好。二、本发明将图像块分类阈值δ引入到改进的图像块分类算法中,利用图像子块、各个图像块的均方误差和整幅图像的均方误差提高分类阈值δ选取的准确性。三、本发明通过合理选取分类阈值δ,将分类后的图像子块分别进行不同程度压缩,最终使图像细节保持能力都得到很大改善。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国网山西省电力公司电力科学研究院,未经国网山西省电力公司电力科学研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010635602.X/2.html,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序