[发明专利]一种基于类内结构紧致约束的无监督对抗域适应方法在审
申请号: | 202010637233.8 | 申请日: | 2020-07-03 |
公开(公告)号: | CN111931814A | 公开(公告)日: | 2020-11-13 |
发明(设计)人: | 李玺;汪慧;田健;赵涵斌 | 申请(专利权)人: | 浙江大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 杭州求是专利事务所有限公司 33200 | 代理人: | 傅朝栋;张法高 |
地址: | 310058 浙江*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 结构 约束 监督 对抗 适应 方法 | ||
本发明公开了一种基于类内结构紧致约束的无监督对抗域适应方法。具体包括如下步骤:获取用于训练的有标签的源域数据集以及无标签的目标域数据集;用神经网络模型提取数据集中每张图片的特征,并根据聚类算法构建提取到的特征的类内结构;利用对抗域适应算法训练神经网络,并在训练过程中以类内结构的紧致性作为条件约束神经网络;利用训练过的模型重新提取每张图片的特征以及特征的类内结构,并以此作为约束用对抗域适应算法进一步训练神经网络;不断迭代进行特征提取,特征类内结构构造以及用以类内结构紧致性为条件的对抗域适应算法训练神经网络。本发明适用于无监督域适应领域中的知识迁移,面对各类复杂的情况具有较佳的效果和鲁棒性。
技术领域
本发明属于无监督域适应领域,特别地涉及一种基于类内结构紧致约束的无监督对抗域适应方法。
背景技术
无监督域适应被定义为如下问题:在给定有标签的源域数据集和无标签的目标域数据集的情况下,将有标签的源域数据集的知识迁移到无标签的目标域数据集上。这类任务可以有效地减轻深度学习训练过程中对有标签数据的需求,从而减少可以减少标签的手工标注的成本。该任务主要有两个关键点:第一是如何将源域数据集的知识迁移到目标域数据集上;第二是如何对目标域的无标签数据集的内在关系进行建模从而更好的利用迁移过来的知识。针对第一点,本发明认为在迁移过程中,无监督域适应任务不仅需要将源域的知识迁移到目标域上,而且应该在迁移的过程中减少知识受到的外部干扰;针对第二点,本发明认为即使是在没有标签的困难场景,数据集内部仍然存在着固有的内部关系,这种关系对更好地利用源域迁移过来是必要的。传统的方法一般关注的是知识的迁移,而没有更深层次的考虑迁移过程中的知识的抗干扰性以及对目标域数据集的运用,这在本任务中是非常重要的。
由于对抗学习的成功,目前基于对抗的方法逐渐被应用到无监督域适应领域中。现有的对抗方法主要是分别输入源域的一组图片和目标域的一组图片,得到两者的特征,并用对抗的方式让两组特征对抗,从而使得源域特征逼近目标域特征。然而,这类方法没有考虑对抗过程中,特征的内在分布会受到干扰,影响最终的迁移效果。
发明内容
为解决上述问题,本发明的目的在于提供一种基于类内结构紧致约束的无监督对抗域适应方法。该方法基于神经网络,目标是在无监督域适应的迁移过程中保证类内结构的紧致性。在无监督域适应中,类内的图片存在相互的关系,例如同类的图片由于有着相似的属性,颜色,形状,对比度等关联信息,其对应特征与同类图片的距离一般小于其与异类图片的特征的距离。针对这个发现,我们的工作设计了一个统一的端到端的深度学习框架对目标域的特征的类内结构进行的建模,并以此作为约束保持了无监督域适应中迁移的类内结构的紧致性,从而使得到的模型更具准确性和鲁棒性。
为实现上述目的,本发明的技术方案为:
一种基于类内结构紧致约束的无监督对抗域适应方法,其包括以下步骤:
S1、获取用于训练的有标签的源域数据集以及无标签的目标域数据集;
S2、用神经网络模型提取数据集中每张图片的特征,并根据聚类算法构建提取到的特征的类内结构;
S3、利用对抗域适应算法训练神经网络,并在训练过程中以类内结构的紧致性作为条件约束神经网络;
S4、上一轮训练完成后,利用训练过的模型重新提取每张图片的特征以及特征的类内结构,并以此作为约束用对抗域适应算法进一步训练神经网络;
S5、不断重复步骤S4对神经网络进行特征提取,特征类内结构构造以及用以类内结构紧致性为条件的对抗域适应算法训练神经网络,直至网络收敛,得到最终的训练好的神经网络模型。
进一步的,定义的算法目标为:通过训练神经网络,使其能够为无标签的目标域数据集的每个样本预测对应的标签。
进一步的,步骤S1的具体实现步骤包括:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010637233.8/2.html,转载请声明来源钻瓜专利网。