[发明专利]基于LSTM的新冠肺炎疫情群体态势预测方法有效

专利信息
申请号: 202010657929.7 申请日: 2020-07-09
公开(公告)号: CN111798991B 公开(公告)日: 2022-09-02
发明(设计)人: 张学旺;李洋洋;黄胜;崔一辉;冯家琦;林金朝 申请(专利权)人: 重庆邮电大学
主分类号: G16H50/80 分类号: G16H50/80;G06N3/04;G06N3/08
代理公司: 北京同恒源知识产权代理有限公司 11275 代理人: 杨柳岸
地址: 400065 *** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 lstm 肺炎 疫情 群体 态势 预测 方法
【权利要求书】:

1.基于LSTM的新冠肺炎疫情群体态势预测方法,其特征在于:该方法包括以下步骤:

S1:新冠肺炎疫情数据获取;

S2:全国新冠肺炎疫情群体态势预测;

S3:省、自治区和直辖市新冠肺炎疫情预测;

S4:城市新冠肺炎疫情群体态势预测;

所述S1具体为:

S11:从搜索平台新冠肺炎疫情大数据平台获取源代码;

S12:利用Python集成开发环境Pycharm,利用Python爬虫库requests、urllib以及JSON模块、lxml模块中的etree函数,通过编程语句xpath('//script[@type=application/json]/text()')获取搜索平台新冠肺炎疫情大数据平台源代码JSON格式文件,并筛选出中国的新冠肺炎疫情数据;

S13:将全国新冠肺炎疫情数据按新增确诊病例数据、新增境外输入病例、新增无症状感染者病例、新增重症病例、新增死亡病例、新增治愈病例和新增疑似病例数据和时间生成csv格式的文件并保存在本地主机;

所述S2具体为:

获取全国新冠肺炎疫情数据后,需要构建LSTM网络和对数据进行预处理和归一化处理,使输入数据符合LSTM网络的输入格式;

S21:将生成的csv格式的新冠肺炎疫情数据按n_lag天的数据构成数组作为输入数据,将之后28天的数据构成数组作为预测标签,形成预测数据集;

S22:将预测数据集按7:3比例划分为训练集和测试集;

S23:将输入数据进行归一化处理,将输入数据x映射x′到[0,1]之间;选取最大值max和最小值min,采用公式(7)进行归一化处理;

S24:构建LSTM模型,通过人工神经网络库Keras,利用Keras中包含的LSTM网络模块以及损失函数、层数和Dropout模块,将训练集数据输入到LSTM网络中进行训练,损失函数选取均方误差函数MSE,优化器选取Adam,通过设置迭代次数epoch、批处理大小batch_size以及时间步长n_lag,不断优化LSTM网络,并使损失函数降到最低;

S25:将测试集数据送入到训练好的LSTM网络中,采用公式(8)均方根误差RMSE来评价真实值与预测值之间的偏差,并且根据测试集得出的RMSE值继续调整LSTM网络训练参数,通过增加迭代次数、修改时间步长n_lag使测试集RMSE值降到最低时,认定此时训练模型已是最优,然后保存模型参数;

S26:预测;将训练好的网络参数保存,将所要预测的时间的数据和时间步长n_lag的数据生成序列,并调整维度,然后输入到已训练好LSTM网络中,得出全国28天后的新冠肺炎疫情群体态势;

S27:重复以上步骤,对全国新增确诊病例数据、新增境外输入病例、新增无症状感染者病例、新增重症病例、新增死亡病例、新增治愈病例和新增疑似病例数据分别进行LSTM网络训练参数,得出不同病例的预测模型、参数和预测结果。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010657929.7/1.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top