[发明专利]数据预测方法、模型训练方法、装置、设备在审
申请号: | 202010664094.8 | 申请日: | 2020-07-10 |
公开(公告)号: | CN111985681A | 公开(公告)日: | 2020-11-24 |
发明(设计)人: | 邢红涛;邢志恒;张夕平 | 申请(专利权)人: | 河北思路科技有限公司 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/06;G06K9/62 |
代理公司: | 北京太合九思知识产权代理有限公司 11610 | 代理人: | 孙明子;刘戈 |
地址: | 061010 河北省沧州市*** | 国省代码: | 河北;13 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 数据 预测 方法 模型 训练 装置 设备 | ||
1.一种数据预测方法,其特征在于,包括:
获取设备工况数据,所述设备工况数据包括热工变量数据以及与所述热工变量数据相关的设备运行数据;
采用所述设备工况数据对热工变量预测模型进行训练,其中,所述设备运行数据用于训练第一单预测模型,历史热工变量数据用于训练第二单预测模型,所述热工变量预测模型是基于所述第一单预测模型和所述第二单预测模型进行融合得到的;
通过所述热工变量预测模型对目标热工变量数据进行预测。
2.根据权利要求1所述的方法,其特征在于,所述采用所述设备工况数据对热工变量预测模型进行训练,包括:
将所述设备工况数据划分为第一训练集和第二训练集;
采用所述第一训练集训练所述第一单预测模型和所述第二单预测模型;
采用所述第二训练集训练非线性神经网络的参数,所述非线性神经网络用于融合所述第一单预测模型和所述第二单预测模型;
基于所述参数对所述第一单预测模型和所述第二单预测模型进行融合,以建立所述热工变量预测模型。
3.根据权利要求2所述的方法,其特征在于,所述采用所述第一训练集训练所述第一单预测模型和所述第二单预测模型,包括:
以所述第一训练集中的所述设备运行数据作为待训练的所述第一单预测模型的输入,以所述设备运行数据对应的所述历史热工变量数据作为待训练的所述第一单预测模型的输出,对所述第一单预测模型进行训练。
4.根据权利要求3所述的方法,其特征在于,所述第一单预测模型包括以下之一或组合:支持向量机、提升树模型XGBoost、循环神经网络、长短期记忆网络。
5.根据权利要求2所述的方法,其特征在于,所述采用所述第一训练集训练所述第一单预测模型和所述第二单预测模型,包括:
以所述第一训练集中i时刻前的多个历史热工变量数据组成的序列作为待训练的所述第二单预测模型的输入,以所述i时刻对应的历史热工变量数据作为待训练的所述第二单预测模型的输出,对所述第二单预测模型进行训练;
其中,所述历史热工变量数据包括多个历史时刻对应的历史热工变量数据,所述i时刻为多个历史时刻中的任一个。
6.根据权利要求5所述的方法,其特征在于,所述第二单预测模型包括以下之一或组合:支持向量机、提升树模型XGBoost、循环神经网络、长短期记忆网络。
7.根据权利要求2所述的方法,其特征在于,所述采用所述第二训练集训练所述非线性神经网络的参数,包括:
将所述第二训练集中的所述设备运行数据作为所述第一单预测模型的输入,通过所述第一单预测模型得到第一预测数据;
将所述第二训练集中的多个所述历史热工变量数据组成的序列作为所述第二单预测模型的输入,通过所述第二单预测模型得到第二预测数据;
将所述第一预测数据和所述第二预测数据输入所述非线性神经网络,以训练所述参数。
8.根据权利要求7所述的方法,其特征在于,所述非线性神经网络为
其中,所述参数包括权重系数wik和偏置系数βi,为所述目标热工变量数据,exp为自然常数e为底的指数函数,k为神经元个数,yik为所述第一预测数据和所述第二预测数据。
9.根据权利要求1所述的方法,其特征在于,所述获取设备工况数据,包括:
确定多类设备运行数据对所述热工变量数据的贡献程度,其中,贡献程度越大,与所述热工变量数据的相关性越大;
从所述多类设备运行数据中选取贡献程度符合预设条件的至少一类设备运行数据作为所述设备运行数据。
10.根据权利要求9所述的方法,其特征在于,选取所述设备运行数据的方法包括偏主成分分析法、核主成分分析法、偏最小二乘法、特征选择Relief算法、卷积神经网络中的一种或组合。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河北思路科技有限公司,未经河北思路科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010664094.8/1.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置