[发明专利]目标对象的等级确定方法、装置、电子设备及存储介质有效
申请号: | 202010693198.1 | 申请日: | 2020-07-17 |
公开(公告)号: | CN111860299B | 公开(公告)日: | 2023-09-08 |
发明(设计)人: | 赵艳杰;段效晨;康林;秦占明;罗廷方 | 申请(专利权)人: | 北京奇艺世纪科技有限公司 |
主分类号: | G06V20/40 | 分类号: | G06V20/40;G06V10/764;G06V10/774;G06V10/82 |
代理公司: | 北京柏杉松知识产权代理事务所(普通合伙) 11413 | 代理人: | 项京;高莺然 |
地址: | 100080 北京市海淀区*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 目标 对象 等级 确定 方法 装置 电子设备 存储 介质 | ||
本发明实施例提供了一种目标对象的等级确定方法、装置、电子设备及存储介质,上述方法包括:获得目标对象的目标数据;从目标数据中提取目标对象的特征信息;将特征信息分别输入预先训练的第一等级确定模型和预先训练的第二等级确定模型,得到第一等级确定模型输出的第一输出结果,和第二等级确定模型输出的第二输出结果;比较第一输出结果与第二输出结果;当第一输出结果与第二输出结果的等级相同时,将第一输出结果的等级或者第二输出结果的等级确定为目标对象的等级;当第一输出结果与第二输出结果的等级不相同时,将第一输出结果与第二输出结果中高的等级确定为目标对象的等级。采用发明实施例提供的方法,提高了确定目标对象等级的效率。
技术领域
本发明涉及深度学习技术领域,特别是涉及一种目标对象的等级确定方法、装置、电子设备及存储介质。
背景技术
目前,针对同一应用场景下的多个目标对象的分类问题,通常可以根据目标对象的特征信息,对目标对象进行等级标注,进而按照目标对象的等级实现对目标对象的分类。
以视频软件为例,视频软件可以通过标注用户等级的方式对其注册用户进行分类。例如,视频软件A可以根据其注册用户的特征信息,对其注册用户标注0-5级的用户等级。当注册用户的特征信息包括用户的活跃程度和用户所上传的视频的内容质量时,用户等级0级可以表示新注册视频软件A的用户,1-5级均可以反映视频软件A的注册用户的活跃程度和用户所上传的视频的内容质量,并且用户的活跃程度越高和用户所上传的视频的内容质量越高,用户的等级越高。
同样的,视频软件也可以通过标注内容等级的方式对视频软件中的多种内容数据进行分类。例如,视频软件A可以根据内容数据的特征信息,对多种内容数据分别标注不同的等级,实现对多种内容数据的分类。
然而,对目标对象进行等级标注,目前主要是通过运营人员人工标注,而人工标注等级往往会导致标注效率较低。此外,由于运营人员对不同等级的标准把握不一定正确,因此,通过运营人员人工标注目标对象的等级,会导致标注等级的正确率较低。
发明内容
本发明实施例的目的在于提供一种目标对象的等级确定方法、装置、电子设备及存储介质,以提高标注用户等级的正确率。
达到上述目的,本发明实施例提供了一种目标对象的等级确定方法,包括:
获得目标对象的目标数据;
从所述目标数据中提取目标对象的特征信息;
将所述特征信息分别输入预先训练的第一等级确定模型和预先训练的第二等级确定模型,得到所述第一等级确定模型输出的表示所述目标对象等级信息的第一输出结果,和所述第二等级确定模型输出的表示所述目标对象等级信息的第二输出结果;其中,所述第一等级确定模型为基于第一训练样本集进行训练得到的,所述第一训练样本集包含:多种等级类型的多个样本对象、各个样本对象的特征信息以及每个所述样本对象标注的等级信息;所述第二等级确定模型为基于第二训练样本集进行训练得到的,所述第二训练样本集为所述第一训练样本集的子集;其中,所述第二训练样本集中不包含:所述第一训练样本集中指定等级的样本对象的特征信息;
比较所述第一输出结果与所述第二输出结果;
当所述第一输出结果与所述第二输出结果的等级相同时,将所述第一输出结果的等级或者所述第二输出结果的等级确定为所述目标对象的等级;
当所述第一输出结果与所述第二输出结果的等级不相同时,将所述第一输出结果与所述第二输出结果中高的等级确定为所述目标对象的等级。
进一步的,所述第二等级确定模型的数量为多个;
所述将所述特征信息分别输入预先训练的第一等级确定模型和预先训练的第二等级确定模型,得到所述第一等级确定模型输出的表示所述目标对象等级信息的第一输出结果,和所述第二等级确定模型输出的表示所述目标对象等级信息的第二输出结果,包括:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京奇艺世纪科技有限公司,未经北京奇艺世纪科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010693198.1/2.html,转载请声明来源钻瓜专利网。