[发明专利]一种基于数据保护的图像增量学习方法有效
申请号: | 202010781900.X | 申请日: | 2020-08-06 |
公开(公告)号: | CN112115967B | 公开(公告)日: | 2023-08-01 |
发明(设计)人: | 王文宇;赖韩江;潘炎 | 申请(专利权)人: | 中山大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/774;G06V10/82;G06N3/0464;G06N3/08 |
代理公司: | 广州粤高专利商标代理有限公司 44102 | 代理人: | 刘俊 |
地址: | 510275 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 数据 保护 图像 增量 学习方法 | ||
本发明提供一种基于数据保护的图像增量学习方法,该方法以深度卷积神经网络ResNet为基础,充分利用外部海量图像的信息,对其进行采样并加入训练过程,来缓解新旧样本不均衡所带来的偏差和灾难性遗忘,外部数据即采即用,训练后直接丢弃,不占用存储空间。同时加入针对于各个任务阶段的输出,提取关于任务的特征,提高模型的性能表现。本发明所提出的增量学习方法突破了传统方法的限制,能够灵活广泛地适应多种实际场景的需求,在计算机视觉领域具有重要的研究和应用价值。
技术领域
本发明涉及计算机视觉技术和增量学习方法领域,更具体地,涉及一种基于数据保护的图像增量学习方法。
背景技术
近年来,随着深度学习和神经网络的不断发展,深度卷积神经网络已经广泛应用于解决图像识别任务。其中包括目前非常流行的AlexNet,VGGNet,ResNet等,在各类大规模的图像识别比赛中取得了出色表现,并成为许多计算机视觉相关研究和应用的基础网络架构。
训练这些包含大量参数的深度模型,通常需要大量且均衡的真实图像数据进行联合训练,从而使得复杂模型能够很好的拟合数据。在现实场景中,任务的规模通常随时间增长,而过去的训练数据由于存储有限或涉及隐私的原因,在后续的训练中不可重用。若仅使用新任务的数据训练已有的模型,将导致灾难性遗忘,即模型在过去任务上的性能会急剧下降。
而增量学习正是为了解决这一问题,从而达到在一系列的学习任务中,模型能有更为均衡的表现。近年来,相关算法的研究也取得了较大的进展,典型的包括EWC(ElasticWeight Consolidation),LwF(Learning without Forgetting),iCaRL(IncrementalClassifier and Representation Learning),EEIL(End-to-End Incremental Learning)等。其中EWC通过统计信息来衡量模型参数的重要性,通过对较为重要的参数的改变加以限制,来缓解灾难性遗忘;LwF在微调模型的基础上,首先使用了知识蒸馏来提取过去模型中的信息;iCaRL作为近期较为先进的增量学习算法,则引入了有限的内存对过去的训练数据进行选择性存储,并使用NEM(nearest-exemplars-mean)分类器进行图像识别;EEIL在iCaRL的基础上加入了数据均衡的微调训练阶段,同时改为使用全连接层的预测输出进行图像分类。
然而,基于有限内存的方法虽然表现更为出色,其适用性却受到一定的限制。在许多场景中,训练数据经过首次的模型训练后便不可重用,因此产生了一些基于生成类似过去数据来缓解灾难性遗忘的算法,但是这些生成模型本身也存在着遗忘问题。
而当前互联网上存在着大量可用的、与训练任务本身无关的数据,若对这些数据进行采样利用,在训练完毕模型后丢弃这些外部数据,便可以解决以上的问题,即不占用额外内存,同时缓解了数据的不均衡。目前国内外的相关研究还处于较为初步的阶段,本专利通过调研和实践,充分利用外部数据和模型融合进行图像的增量学习识别。
申请号为201911308607.5的专利说明书中公开了一种基于动态修正向量的图像增量学习方法,本申请鉴于实际生活中数据集都是动态变化的,为了解决深度模型对动态变化的数据集进行训练的问题,减小对分布式计算系统的依赖,并且节省大量的计算开销和系统内存,本发明提出以32层残差网络ResNet-32为基础,通过引入知识蒸馏技术和代表性记忆方法,利用动态修正向量的技巧,缓解了灾难性遗忘问题,提高了增量学习的性能。这种增量学习方法适应了实际应用场景的需求,在人工智能领域具有重要的研究和应用价值。然而,该专利无法实现充分利用外部海量图像的信息,对其进行采样并加入训练过程,来缓解新旧样本不均衡所带来的偏差和灾难性遗忘,外部数据即采即用,训练后直接丢弃,不占用存储空间。
发明内容
本发明提供一种基于数据保护的图像增量学习方法,该方法深度卷积神经网络ResNet为基础,充分利用外部海量图像的信息,对其进行采样并加入训练过程,来缓解新旧样本不均衡所带来的偏差和灾难性遗忘,外部数据即采即用,训练后直接丢弃,不占用存储空间。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中山大学,未经中山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010781900.X/2.html,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序