[发明专利]一种基于贝叶斯算法的高压断路器拒动概率预测方法及装置有效
申请号: | 202010825579.0 | 申请日: | 2020-08-17 |
公开(公告)号: | CN111985708B | 公开(公告)日: | 2023-09-22 |
发明(设计)人: | 马宏明;王欣;张恭源;段雨廷;钱国超;程志万;周仿荣;彭晶;彭兆裕;杨明昆;何顺;邱鹏锋 | 申请(专利权)人: | 云南电网有限责任公司电力科学研究院 |
主分类号: | G06N7/01 | 分类号: | G06N7/01;G06F18/2415;G06F18/214;G06Q10/04;G06Q50/06 |
代理公司: | 北京弘权知识产权代理有限公司 11363 | 代理人: | 逯长明;许伟群 |
地址: | 650217 云南省昆*** | 国省代码: | 云南;53 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 贝叶斯 算法 高压 断路器 概率 预测 方法 装置 | ||
1.一种基于贝叶斯算法的高压断路器拒动概率预测方法,其特征在于,所述方法包括:
获取已发生拒动和未发生拒动的高压断路器的原始数据,所述原始数据为高压断路器的设备参数及运行参数;
根据所述高压断路器的原始数据,组成基于贝叶斯算法的高压断路器拒动概率预测模型的训练集;
根据所述训练集,建立似然矩阵;
根据所述似然矩阵,确定先验概率和条件概率,建立基于贝叶斯算法的高压断路器拒动概率预测模型;
获取待预测高压断路器的原始数据;
将待预测高压断路器的原始数据输入到所述高压断路器拒动概率预测模型中,得到所述待预测高压断路器的拒动概率;
其中,根据所述似然矩阵,确定先验概率和条件概率,建立基于贝叶斯算法的高压断路器拒动概率预测模型,包括:
通过如下公式获得先验概率:
其中,P1为先验概率,n为高压断路器总数量,m为0,1或2,Y1为电压等级,T为拒动情况;
通过如下公式获得条件概率:
其中,P2为条件概率,Y2为厂家型号,Y3为运行年限,Y4为变电站环境气象,Y5为操动机构类型;
根据所述先验概率和条件概率,建立基于贝叶斯算法的高压断路器拒动概率预测模型,所述概率预测模型采用以下公式表示:
其中,P3为预测概率。
2.根据权利要求1所述的基于贝叶斯算法的高压断路器拒动概率预测方法,其特征在于,所述原始数据包括:电压等级、厂家型号、运行年限、变电站环境气象、操动机构类型及拒动情况。
3.根据权利要求2所述的基于贝叶斯算法的高压断路器拒动概率预测方法,其特征在于,所述似然矩阵中的元素包括:Y1、Y2、Y3、Y4、Y5及T;
其中,Y1表示所述电压等级,当所述高压断路器的电压为500kV时,所述Y1=0,当所述高压断路器的电压为220kV时,所述Y1=1,当所述高压断路器的电压为110kV时,所述Y1=2;
Y2表示所述厂家型号,厂家型号的拒动缺陷率=全网拒动缺陷发生总数量/全网设备总数量,全网的拒动平均缺陷率=全网拒动缺陷发生总数量/全网设备总数量,当所述厂家型号的拒动缺陷率>全网的拒动平均缺陷率×(1-20%)时,所述Y2=0,当全网的拒动平均缺陷率×(1-20%)≤所述厂家型号的拒动缺陷率≤全网的拒动平均缺陷率×(1+20%)时,所述Y2=1,当所述厂家型号的拒动缺陷率>全网的拒动平均缺陷率×(1+20%)时,所述Y2=2;
Y3表示所述运行年限,当所述高压断路器运行年限≤3年或高压断路器最近一次检修后运行年限≥12年时,所述Y3=1,当所述高压断路器为其他运行年限时,所述Y3=0;
Y4表示所述变电站环境气象,当所述变电站环境气象湿度>80%时,所述Y4=2,当65%≤所述变电站环境气象湿度≤80%时,所述Y4=1,当所述变电站环境气象湿度<65%时,所述Y4=0;
Y5表示所述操动机构类型,当所述操动机构类型为液压操动机构时,所述Y5=0,当所述操动机构类型为弹簧或气动操动机构时,所述Y5=1;
T表示所述拒动情况,如果所述高压断路器未发生过拒动,那么所述T=0,如果所述高压断路器发生过拒动,那么所述T=1。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于云南电网有限责任公司电力科学研究院,未经云南电网有限责任公司电力科学研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010825579.0/1.html,转载请声明来源钻瓜专利网。